Thermodynamic Properties of Isobutane for Temperatures from 250 to 600 K and Pressures from 0.1 to 40 MPa

Meyer Waxman* and John S. Gallagher

Thermophysics Division, National Bureau of Standards (U.S.), Washington, D.C. 20234

Tables of Isobutane thermodynamic properties are presented for temperatures from 250 to 600 K and pressures from 0.1 to 40 MPa. The tables include saturation and isobaric properties, namely, pressure, specific volume, temperature, internal energy, enthalpy, and entropy. The properties are defined by a specific thermodynamic surface, which is expressed analytically in the form of the Heimholtz energy as a function of temperature and density. The surface is developed from only pressure-density-temperature data. The Appendix to the paper includes a summary of the correlation development and of new isobutane measurements, saturated vapor pressures, and isothermal pressure-density-temperature data for temperatures of 377.59, 394.26, 423.15, and 448.15 K. The data were used to assess the reliability of literature sources used in the correlation. Surface-derived properties are compared with experimental data. In addition, the correlation is compared with a recent isochoric (nonanalytic) correlation by Goodwin and Haynes.

The current search for energy sources and more efficient thermal processing of such energy has rekindled the general guestion as to what extent thermodynamic properties associated with the thermal process are known. For example, the ongoing design and construction of pilot geothermal power plants has involved the analysis of thermophysical properties as the basis for the selection of the heat exchanger fluid. The low temperatures characteristic of geothermal energy soruces, 420-530 K, require that the thermal cycle be cascaded for the optimum utilization of the thermal energy. The optimization also requires the realization of other thermal criteria. Some of these are as follows: (1) the working pressure in both the boiler and the condenser should be as low as feasible but greater than atmospheric; (2) the critical temperature of the working fluid should be greater than the design condensing temperature, 310 K; and (3) the enthalpy of vaporization and the specific volume of the saturated vapor at the condensing temperature should both be small. Cooperatively, several geothermal research groups evaluated the suitability of different substances for the heat exchanger fluid and, in particular, selected isobutane either as a pure fluid or as part of a fluid mixture as a promixing choice (1, 2). Further, the groups recommended a critical correlation of isobutane which would yield more definitive thermodynamic properties than those of existing correlations. The correlation would use new measurements of sufficient quality as a guide for assessing the relative merit of data sources. Subsequently the Thermophysics Division of the National Bureau of Standards (U.S.) undertook such a program; the new measurements were to be obtained in regions where we already had the experimental capability. In part, on the basis of the new data which we have obtained, we summarize herein the results of this program, namely, as tables of isobutane thermodynamic properties. Complementary background information, such as the functions used to define the isobutane thermodynamic surface and the new measurements, are dis-

Figure 1. Distribution of $P-\rho-T$ data used in the correlation. X values are based on an analytical representation of saturated liquid densities determined experimentally by Sliwinski (17) for 283 $\leq T \leq$ 368 K and Haynes (16) for 115 $\leq T \leq$ 300 K and the critical-point constants given in Table III.

cussed in the Appendix of this paper. A discussion of the development of the correlation was presented at the Eighth Symposium on Thermophysical Properties (3).

Published correlations of isobutane based on earlier data are cited in ref 2 and 4-8. A recent isochoric (nonanalytic) correlation based on the data used herein is cited in ref 9; its primary objective is the characterization of isobutane as a component of liquefied natural gas (LNG).

The thermodynamic surface for isobutane is expressed analytically in the form of the Helmholtz energy as a function of temperature and density. The function is applicable, exclusive of the critical region, for temperatures from 250 to 600 K and pressures from 0 to 40 MPa. It is incorporated as part of a Fortran computer program that permits calculation of the equilibrium properties defined by the surface for given input values of two of the three variables: pressure (P), density (ρ), and temperature (T). The properties include energy, enthalpy, entropy, and specific heat. The computer program permits the user to calculate any desired property along isobars, isochores, isotherms, and saturation boundary in any of four commonly used unit systems. The computer program and detailed isobutane thermodynamic tables are listed in an earlier report (10), which is available from the National Technical Information Service, Department of Commerce (U.S.).

The distributions of the data sources used in the development of the surface are illustrated in Figure 1. The statistical weight assigned to a particular set of data varied according to our estimate of its relative accuracy as compared to the other data sets. This is discussed in an earlier publication (3). In the gas phase for temperatures greater than the critical temperature ($T_c = 407.851$ K), the surface is generally in accord with selected $P-\rho-T$ data (ref 11 and this paper) to a density deviation of 0.1% or better. For the isothermal temperature of 423 K, the deviations are larger in a localized region for densities near critical density ($\rho_c = 227.0$ kg/m³); its cause is discussed in the Appendix. In the liquid phase, the agreement varies with the

Table I. Saturation Properties of Isobutane^{a, b}

Т, К	P, MPa	υ <mark>ι</mark> , m³/kg	v_{ν} , m ³ /kg	U _l , kJ/kg	U _{vap} , kJ/kg	$U_{ u}, \ { m kJ/kg}$	H _l , kJ/kg	H _{vap} , kJ/kg	$H_{ u},$ kJ/kg	S ₁ , kJ/ (kg K)	S _{vap} , kJ/ (kg K)	$S_{\nu}, kJ/$ (kg K)
250	0.0634	0.001 651	0.5485	-25.2	340.4	315.2	-25.1	375.1	350.0	-0.098	1.500	1.403
252	0.0691	0.001656	0.508 5	-20.8	338.5	317.7	-20.7	373.4	352.7	-0.081	1.482	1.401
254	0.0752	0.001 662	0.4684	-16.5	336.6	320.2	-16.3	371.7	355.4	-0.063	1.463	1.400
256	0.0817	0.001668	0.4337	-12.1	334.7	322.6	-12.0	370.0	358.0	-0.046	1.445	1.399
258	0.0886	0.001 674	0.402 2	-7.7	332.8	325.1	-7.5	368.3	360.7	-0.029	1.427	1.398
260	0.0959	0.001681	0.3734	-3.3	330.9	327.6	-3.1	366.5	363.4	-0.012	1.410	1.398
262	0.1037	0.001 687	0.3471	1.2	328.9	330.1	1.4	364.8	366.1	0.005	1.392	1.397
264	0.1121	0.001 693	0.3230	5.6	327.0	332.6	5.8	363.0	368.8	0.022	1.375	1.397
266	0.1209	0.001 699	0.300 9	10.1	325.0	335.2	10.3	361.2	371.5	0.039	1.358	1.397
268	0.1302	0.001706	0.2807	14.6	323.1	337.7	14.8	359.4	374.2	0.056	1.341	1.397
270	0.1401	0.001713	0.262 1	19.1	321.1	340.2	19.3	357.6	376.9	0.073	1.324	1.397
272	0.1506	0.001 719	0.245 0	23.6	319.1	342.7	23.9	355.7	379.6	0.089	1.308	1.397
274	0.1616	0.001726	0.229 2	28.2	317.1	345.3	28.5	353.9	382.3	0.106	1.292	1.397
276	0.1733	0.001 733	0.214 7	32.7	315.1	347.8	33.0	352.0	385.0	0.123	1.275	1.398
278	0.1856	0.001 740	0.2013	37.3	313.1	350.4	37.7	350.1	387.8	0.139	1.259	1.398
280	0.1985	0.001 747	0.1888	41.9	311.0	353.0	42.3	348.2	390.5	0.156	1.243	1.399
282	0.2122	0.001 754	0.1774	46.6	309.0	355.5	46.9	346.2	393.2	0.172	1.228	1.400
284	0.2265	0.001 762	0.166 7	51.2	306.9	358.1	51.6	344.3	395.9	0.189	1.212	1.401
286	0.2416	0.001 769	0.156 8	55.9	304.8	360.7	56.3	342.3	398.6	0.205	1.197	1.402
288	0.2574	0.001777	0.1477	60.6	302.7	363.3	61.0	340.2	401.3	0.221	1.181	1.403
290	0.2740	0.001 784	0.1391	65.3	300.6	365.8	65.8	338.2	404.0	0.238	1.166	1.404
292	0.2914	0.001 792	0.1312	70.0	298.4	368.4	70.5	336.1	406.7	0.254	1.151	1.405
294	0.3096	0.001800	0.123 8	74.8	296.2	371.0	75.3	334.0	409.3	0.270	1.136	1.406
296	0.3286	0.001808	0.116 9	79.6	294.0	373.6	80.2	331.9	412.0	0.286	1.121	1.408
298	0.3485	0.001 816	0.1105	84.4	291.8	376.2	85.0	329.7	414.7	0.303	1.106	1.409
300	0.3693	0.001 825	0.104 5	89.2	289.6	378.8	89.9	327.5	417.4	0.319	1.092	1.410
302	0.3911	0.001 833	0.098 86	94.1	287.3	381.4	94.8	325.3	420.0	0.335	1.077	1.412
304	0.4137	0.001 842	0.093 61	98.9	285.0	384.0	99.7	323.0	422.7	0.351	1.063	1.413
306	0.4374	0.001 851	0.08867	103.8	282.7	386.6	104.7	320.7	425.4	0.367	1.048	1.415
308	0.4620	0.001 860	0.084 05	108.8	280.4	389.2	109.6	318.4	428.0	0.383	1.034	1.417
310	0.4877	0.001 869	0.07971	113.7	278.0	391.8	114.6	316.0	430.6	0.399	1.019	1.419
312	0.5144	0.001879	0.075 65	118.7	275.6	394.4	119.7	313.6	433.3	0.415	1.005	1.420
314	0.5422	0.001 889	0.07182	123.7	2/3.2	396.9	124.8	311.1	435.9	0.431	0.991	1.422
310	0.5711	0.001 898	0.068 22	128.8	270.8	399.3	129.9	308.6	438.5	0.447	0.977	1.424
318	0.6011	0.001 908	0.064 83	133.8	208.3	402.1	135.0	306.1	441.1	0.463	0.963	1.426
320	0.6323	0.001 919	0.00104	138.9	203.7	404.7	140.2	303.3	445.7	0.479	0.948	1.428
322	0.0047	0.001 929	0.03863	144.1	203.2	407.3	145.4	300.9	440.2	0.495	0.934	1.430
324	0.0982	0.001 940	0.03379	149.2	260.6	409.0	150.0	290.2	440.0	0.511	0.920	1.432
320	0.7550	0.001 951	0.055 11	150 4	256.0	412.4	123.0	293.3	452.0	0.527	0.900	1.434
330	0.7051	0.001 902	0.03038	164 9	255.5	417.5	166.5	292.7	455.9	0.545	0.872	1.430
332	0.8452	0.001986	0.045 91	170.2	232.0	420.1	171.8	202.2	458.0	0.539	0.875	1.430
334	0.8852	0.001 998	0.043.77	175.5	247.1	420.1	177.3	287.0	4613	0.575	0.803	1.442
336	0.9266	0.002.011	0.04173	180.8	247.1	425 1	182.7	281 1	463.8	0.571	0.837	1.442
338	0.9695	0.002.011	0.039.81	186.2	244.5	427.6	188 2	278.0	466.2	0.623	0.837	1.446
340	1.0137	0.002.023	0.037.98	191.6	238.5	430 1	193.7	270.0	468.6	0.025	0.025	1 4 4 8
342	1.0595	0.002 050	0.036 23	197.1	235.5	432.6	199.3	271 7	471.0	0.655	0.795	1.450
344	1.1067	0.002.064	0.034 58	202.6	232.5	435.1	204.9	268.5	473.4	0.671	0.781	1.452
346	1.1555	0.002 079	0.033 02	208.1	229.4	437.6	210.5	265.2	475.7	0.687	0.766	1.454
348	1.2058	0.002 094	0.031 53	213.7	226.3	440.0	216.2	261.8	478.0	0.704	0.752	1.456
350	1.2577	0.002 109	0.03011	219.3	223.1	442.4	221.9	258.4	480.3	0.720	0.738	1.4.58
352	1.3113	0.002 125	0.028 76	224.9	219.9	444.8	227.7	254.8	482.5	0.736	0.724	1.460
354	1.3665	0.002 141	0.027 47	230.6	216.6	447.2	233.5	251.2	484.8	0.752	0.710	1.462
356	1.4234	0.002 158	0.026 24	236.4	213.2	449.6	239.4	247.5	486.9	0.768	0.695	1.463
358	1.4820	0.002 176	0.025 06	242.1	209.8	451.9	245.4	243.7	489.1	0.784	0.681	1.465
360	1.5424	0.002 194	0.023 94	248.0	206.3	454.2	251.3	239.8	491.1	0.801	0.666	1.467
362	1.6045	0.002 213	0.022 87	253.8	202.7	456.5	257.4	235.8	493.2	0.817	0.651	1.469
364	1.6685	0.002 233	0.021 85	259.8	199.0	458.7	263.5	231.7	495.2	0.834	0.637	1.470
366	1.7344	0.002 254	0.020 87	265.7	195.2	460.9	269.6	227.5	497.1	0.850	0.622	1.472
368	1.8021	0.002 276	0.019 92	271.8	191.3	463.1	275.9	223.1	499.0	0.867	0.606	1.473
370	1.8718	0.002 298	0.01902	277.9	187.3	465.2	282.2	218.6	500.8	0.883	0.591	1.474
372	1.9435	0.002 322	0.01815	284.0	183.2	467.3	288.5	214.0	502.6	0.900	0.575	1.475
374	2.0172	0.002 347	0.017 32	290.3	179.0	469.3	295.0	209.2	504.2	0.917	0.559	1.476
376	2.0929	0.002 374	0.016 52	296.6	174.7	471.2	301.5	204.3	505.8	0.934	0.543	1.477
378	2.1708	0.002402	0.015 75	302.9	170.2	473.1	308.1	199.1	507.3	0.951	0.527	1.478
380	2.2508	0.002431	0.015 00	309.4	165.5	474.9	314.9	193.8	508.7	0.968	0.510	1.478
382	2.3331	0.002463	0.014 28	315.9	160.7	476.6	321.7	188.2	509.9	0.985	0.493	1.478
384	2.4176	0.002497	0.01360	322.6	155.6	478.2	328.6	182.5	511.1	1.003	0.475	1.478
380	2.3044	0.002534	0.012.92	329.4	150.4	479.7	335.7	176.4	512.1	1.021	0.457	1.478
200	2.3933	0.002574	0.012.27	330.2	144.9	481.1	342.9	170.0	512.9	1.039	0.438	1.477
200	2.0031	0.00201/	0.01103	343.3	1220	402.3 102.2	2570	165.2	5120	1.03/	0.419	1.470
392	2.1193	0.002 003	0.011.01	350.5	176 2	403.3 121 1	351.9 365 7	1/0.1	513.9	1.0/0	0.370	1.4/4
306	2.0700	0.002/18	0.01040	365 5	110 2	404.1	303.1	140.4	514.1	1 1 1 4	0.311	1.4/2
398	3.0775	0.002 777	0.009798	373 4	111.4	484 0	3827	1210	512.0	1 1 2 4	0.304	1 464
400	3,1826	0.002 927	0.008 599	381.8	102.8	484 6	391 1	120.9	512.0	1.155	0.323	1.459
402	3.2907	0.003 021	0.007 989	390.6	93.1	483.7	400 6	109.4	510.0	1.180	0.272	1.452
404	3.4020	0.003 148	0.007 354	400.2	81.7	481.9	410.9	96.0	506.9	1.205	0.238	1.442

P, MPa	<i>T.</i> K	υ _l , m³/kg	v_{ν} , m ³ /kg	$U_1,$ kJ/kg	U _{vap} , kJ/kg	$U_{\nu},$ kJ/kg	$H_{\rm l},$ kJ/kg	H _{vap} , kJ/kg	$H_{\nu},$ kJ/kg	$S_{\rm l}, {\rm kJ}/{\rm (kg \ K)}$	S _{vap} , kJ/ (kg K)	$S_{\nu}, kJ/$ (kg K)
0.05	244 63	0.001.635	0.684.1	-36.8	345.5	308.7	-36.7	379.6	342.9	-0.145	1 552	1 407
0.03	261.06	0.001 684	0.359 1	-0.9	329.9	328.9	-0.7	365.6	364.9	-0.003	1.400	1.398
0.15	271.89	0.001 719	0.245 8	23.4	319.2	342.6	23.7	355.8	379.5	0.088	1.309	1.397
0.20	280.22	0.001 748	0.1875	42.4	310.8	353.2	42.8	348.0	390.8	0.157	1.242	1.399
0.25	287.08	0.001 773	0.1518	58.4	303.7	362.1	58.8	341.2	400.0	0.214	1.188	1.402
0.30	292.96	0.001 796	0.1276	72.3	297.4	369.7	72.8	335.1	407.9	0.262	1.144	1.406
0.35	298.14	0.001 817	0.1100	84.7	291.7	376.4	85.4	329.5	414.9	0.304	1.105	1.409
0.40	302.80	0.001 837	0.096 / 3	96.0	280.4	382.4	107.2	324.4	421.1	0.341	1.0/1	1.413
0.43	310.93	0.001 830	0.080 23	116.1	276.9	393.0	117.0	314.9	431.9	0.373	1.041	1 4 1 9
0.55	314.55	0.001 891	0.070 82	125.1	272.5	397.6	126.2	310.4	436.6	0.436	0.987	1.423
0.60	317.93	0.001 908	0.064 95	133.7	268.4	402.0	134.8	306.2	441.0	0.463	0.963	1.426
0.65	321.10	0.001 925	0.05996	141.8	264.3	406.1	143.0	302.1	445.1	0.488	0.941	1.429
0.70	324.10	0.001 941	0.05565	149.5	260.5	410.0	150.9	298.1	448.9	0.512	0.920	1.432
0.75	326.95	0.001 956	0.051 89	156.9	256.7	413.6	158.4	294.2	452.5	0.535	0.900	1.435
0.80	329.66	0.001972	0.04858	164.0	253.1	417.1	165.6	290.4	455.9	0.557	0.881	1.437
0.83	332.24	0.001 987	0.043.04	177.4	249.0	420.4	179.2	280.7	459.2	0.517	0.805	1.440
0.95	337.10	0.002.005	0.04066	183.8	242.7	426.5	185.7	279.4	465.1	0.616	0.829	1.445
1.00	339.39	0.002 033	0.038 53	190.0	239.4	429.4	192.0	275.9	467.9	0.634	0.813	1.447
1.05	341.59	0.002 047	0.036 59	196.0	236.2	432.1	198.1	272.4	470.5	0.652	0.798	1.450
1.10	343.72	0.002062	0.034 81	201.8	233.0	434.8	204.1	269.0	473.0	0.669	0.783	1.452
1.15	345.78	0.002 077	0.033 19	207.5	229.8	437.3	209.9	265.6	475.5	0.686	0.768	1.454
1.20	347.77	0.002 092	0.03169	213.0	226.7	439.7	215.5	262.2	477.8	0.702	0.754	1.456
1.25	349.71	0.002 107	0.03031	218.5	223.6	442.1	221.1	258.9	480.0	0.717	0.740	1.458
1.30	353 41	0.002122	0.02784	223.0	217.6	446.5	220.3	252.3	484.1	0.747	0.714	1.461
1.40	355.19	0.002 150	0.026 73	234.0	214.6	448.6	237.0	249.0	486.0	0.762	0.701	1.463
1.45	356.92	0.002 166	0.025 69	239.0	211.6	450.6	242.1	245.8	487.9	0.776	0.689	1.464
1.50	358.60	0.002 181	0.024 72	243.9	208.7	452.6	247.2	242.5	489.7	0.789	0.676	1.466
1.55	360.25	0.002 197	0.023 81	248.7	205.8	454.5	252.1	239.3	491.4	0.803	0.664	1.467
1.60	361.86	0.002 212	0.022 94	253.4	202.9	456.3	257.0	236.1	493.0	0.816	0.652	1.468
1.05	364.96	0.002228	0.02213 0.02137	250.1	200.0	430.1	261.7	232.9	494.0	0.841	0.641	1.470
1.75	366.47	0.002 259	0.020 64	267.2	194.3	461.4	271.1	226.4	497.6	0.854	0.618	1.472
1.80	367.94	0.002 275	0.019 95	271.6	191.4	463.0	275.7	223.2	498.9	0.866	0.607	1.473
1.85	369.38	0.002 291	0.01930	276.0	188.6	464.6	280.2	220.0	500.3	0.878	0.596	1.474
1.90	370.79	0.002 308	0.01867	280.3	185.7	466.0	284.7	216.8	501.5	0.890	0.585	1.475
1.95	372.18	0.002 324	0.018 08	284.6	182.9	467.5	289.1	213.6	502.7	0.901	0.574	1.475
2.00	3/3.34	0.002341	0.01/51	288.8	180.0	408.8	293.5	210.3	504.0	0.913	0.563	1.4/0
2.03	376 18	0.002339	0.016.97	293.0	174 3	471.4	302 1	207.1	505.9	0.924	0.332	1.477
2.10	377.47	0.002 394	0.015 95	301.2	171.4	472.6	306.4	200.5	506.9	0.946	0.531	1.477
2.20	378.74	0.002412	0.015 47	305.3	168.5	473.8	310.6	197.2	507.8	0.957	0.521	1.478
2.25	379.98	0.002 431	0.015 01	309.3	165.6	474.9	314.8	193.9	508.7	0.968	0.510	1.478
2.30	381.20	0.002 450	0.014 57	313.3	162.7	475.9	318.9	190.5	509.5	0.978	0.500	1.478
2.35	382.41	0.002470	0.014 14	317.2	159.7	476.9	323.0	187.1	510.2	0.989	0.489	1.478
2.40	383.39	0.002490	0.013 74	321.2	150.7	47788	321.2	183.7	510.9	1 010	0.479	1.478
2.50	385.90	0.002.532	0.012.96	329.0	150.6	479.7	335.3	176.7	512.1	1.010	0.458	1 478
2.55	387.03	0.002 554	0.012 58	332.9	147.6	480.5	339.4	173.1	512.5	1.030	0.447	1.477
2.60	388.14	0.002 577	0.012 22	336.7	144.5	481.2	343.4	169.5	513.0	1.040	0.437	1.477
2.65	389.24	0.002 600	0.011 87	340.6	141.3	481.9	347.5	165.9	513.3	1.050	0.426	1.476
2.70	390.32	0.002 624	0.011 53	344.4	138.1	482.5	351.5	162.1	513.6	1.060	0.415	1.476
2.75	391.38	0.002 649	0.011 20	348.2	134.8	483.0	355.5	158.3	513.8	1.070	0.405	1.475
2.80	392.43	0.002676	0.010 88	352.1	131.3	483.3	359.0	154.4	514.0	1.080	0.394	1.474
2.85	394 49	0.002703	0.010.30	3597	128.1	484 3	367.6	130.3	514.0	1 100	0.382	1.471
2.95	395.49	0.002762	0.009 949	363.6	121.0	484.6	371.7	142.2	513.9	1.110	0.360	1.469
3.00	396.49	0.002 793	0.009 652	367.4	117.3	484.8	375.8	137.9	513.7	1.120	0.348	1.468
3.05	397.47	0.002 827	0.009 359	371.3	113.6	484.8	379.9	133.5	513.4	1.130	0.336	1.466
3.10	398.43	0.002 862	0.009 070	375.2	109.6	484.8	384.1	128.9	513.0	1.140	0.323	1.463
3.15	399.39	0.002 900	0.008 784	379.2	105.6	484.7	388.3	124.1	512.4	1.150	0.311	1.461
3.20	401.25	0.002 941	0.008 218	387 2	96.9	484.5	396.9	113.0	510.8	1 171	0.298	1.438
3.30	402.17	0.003 033	0.007 936	391.4	92.2	483.6	401.4	108.4	509.8	1.182	0.269	1.451
3.35	403.07	0.003 086	0.007 652	395.7	87.2	482.9	406.0	102.5	508.5	1.193	0.254	1.447
3.40	403.97	0.003 146	0.007 365	400.1	81.9	481.9	410.8	96.2	507.0	1.204	0.238	1.442
3.45	404.85	0.003 213	0.007072	404.7	76.1	480.7	415.7	89.4	505.1	1.216	0.221	1.437

^a The symbol v denotes the specific volume, U the internal energy, H the enthalpy, and S the entropy, and the subscripts 1 and v refer to the liquid and vapor phases, respectively. The subscripted abbreviation vap refers to liquid vaporization. ^b The reference states for the derived enthalpy and entropy properties from the surface are adjusted to be those of the liquid at the normal boiling temperature defined by the surface (T = 261.395 K for P = 0.101325 MPa).

<u> </u>	v. m ³ /kg	U. kJ/kg	H. kJ/kg	S, kJ/ (kg K)	$v, m^3/kg$	U, kJ/kg	H, kJ/kg	S, kJ/ (kg K)	$v, m^3/kg$	<i>U</i> , kJ/kg	H, kJ/kg	<i>S</i> , kJ/ (kg K)
		<u> </u>	0.1.)(P	(01006 \(D	(
250	0.001650	-25.2	-25.1	-0.098	0.001 650	-25.2	-25.1	a -0.098	0.001 650	-25.3	-25.0	-0.098
260 261.06	0.001681 0.001684	-3.3 -0.9	$-3.1 \\ -0.8$	-0.012 -0.003	0.001681	-3.3	-3.1	-0.012	0.001 680	-3.3	-3.0	-0.012
261.00	$\frac{0.001001}{0.3592}$	328.9	364.8	1.398								
261.39					0.001 685	-0.2	0.0	0.000				
261.39	0 272 0	241 4	2797	1 450	0.3547	329.4	365.3	1.398	0 001 712	10 1	104	0.072
280	0.388 2	355.7	394.5	1.507	0.3830	355.6	394.5	1.505	0.001712	41.9	42.3	0.156
280.22									0.001 748	4 2.'4	42.8	0.157
280.22 290	0.4034	370.4	410.8	1.564	0.398.0	370.4	410.7	1.562	0.1875 0.1955	353.2 367.9	390.8 407.0	1.399 1.456
300	0.4185	385.6	427.5	1.621	0.4129	385.6	427.4	1.619	0.2036	383.3	424.0	1.514
310 320	0.4335	401.3	444.6	1.677	0.4277	401.3 417 4	444.6	1.675	0.2115	399.2 415 4	441.5 4593	1.571
330	0.4634	434.0	480.3	1.789	0.457 2	434.0	480.3	1.787	0.227 2	432.1	477.6	1.684
340	0.478 2	451.0	498.9	1.844	0.4718	451.0	498.8	1.842	0.234 9	449.3	496.3	1.740
350	0.4930	468.5	517.8	1.899	0.4864	468.5	517.8	1.897	0.2425	466.9 485.0	515.4	1.795
370	0.5224	504.9	557.2	2.008	0.5155	504.9	557.2	2.006	0.2577	503.5	555.0	1.905
380	0.5371	523.8	577.6	2.063	0.5300	523.8	577.5	2.061	0.2653	522.4	575.5	1.960
400	0.5518	563.0	598.4 619.6	2.117	0.544 5	563.0	598.5 619.6	2.115	0.2728	541.8 561.7	596.4 617.8	2.014
410	0.5810	583.2	641.4	2.224	0.5734	583.2	641.3	2.222	0.287 8	582.0	639.6	2.122
420	0.5956	603.9	663.5	2.278	0.5878	603.9	663.5	2.276	0.295 2	602.8	661.8	2.176
440	0.6248	646.7	709.1	2.331	0.616 5	646.6	709.1	2.329	0.3028	645.6	707.6	2.229
450	0.639 3	668.7	732.6	2.436	0.6309	668.7	732.6	2.435	0.3174	667.6	731.1	2.335
460 470	0.6538	691.1 713 9	756.5	2.489	0.6452	691.1 713 9	756.5	2.487	0.324 8	690.1 713.0	755.1	2.388
480	0.682 9	737.2	805.5	2.593	0.6739	737.2	805.5	2.591	0.3395	736.3	804.2	2.440
490	0.6974	760.9	830.6	2.645	0.688 2	760.9	830.6	2.643	0.346 9	760.0	829.3	2.544
500	0.7118	784.9	856.1 882.0	2.697	0.7025	784.9	856.1 882.0	2.695	0.354 2	784.1	854.9	2.596
520	0.740 8	834.3	908.3	2.799	0.7311	834.2	908.3	2.797	0.368 9	833.4	907.2	2.698
530	0.7552	859.5	935.0	2.850	0.7453	859.5	935.0	2.848	0.376 2	858.7	933.9	2.749
540 550	0.7841	885.1 911.1	962.1 989.5	2.900	0.7396	885.1 911.1	962.0 989.5	2.898	0.3835	884.3 910.3	961.0 988.5	2.800
560	0.7986	937.4	1017.3	3.001	0.7881	937.4	1017.3	2.999	0.3981	936.7	1016.3	2.900
570	0.8130	964.1	1045.4	3.050	0.8024	964.1	1045.4	3.049	0.405 3	963.4	1044.4	2.950
590	0.8274	1018.5	11073.9	3.100	0.810 0	1018.5	1073.9	3.147	0.4126	990.4 1017.9	1073.0	3.000
600	0.8563	1046.3	1131.9	3.198	0.8451	1046.3	1131.9	3.196	0.4272	1045.6	1131.0	3.098
250	0.001.649	Pressure = 25.4	0.4 MPa	0.000	0 001 640	Pressure = 25.6	0.6 MPa	0.000	0 001 649	Pressure =	0.8 MPa	-0.100
250	0.001649	-23.4	-24.8 -2.8	-0.099	0.001649	-23.6	-24.6	-0.099	0.001648	-23.7	-24.4 -2.5	-0.100 -0.014
270	0.001711	18.9	19.6	0.072	0.001710	18.7	19.7	0.071	0.001 709	18.5	19.9	0.070
280 290	0.001746	41.7 65 1	42.4	0.155	0.001745	41.5 64 9	42.6 66.0	0.154	0.001 743	41.3 64 7	42.7 66 1	0.153
300	0.001 825	89.2	89.9	0.319	0.001 823	88.9	90.0	0.318	0.001 821	88.6	90.1	0.317
302.80	0.001 837	96.0	96.8	0.341								
302.80	0.096 72	382.4	421.1	1.413	0.001.969	1126	1147	0 200	0 001 866	112.2	11/ 9	0 208
317.93	0.1000	334.2	434.2	1.455	0.001 808	133.7	134.8	0.463	0.001 800	115.5	114.0	0.396
317.93					0.064 96	402.0	441.0	1.426				
320	0.104 4	411.0	452.7	1.514	0.065 66	405.7	445.0	1. 439	0.001917	138.7	140.2	0.478
329.66									0.001 972	164.0	165.6	0.557
329.66 330	0 108 7	428.0	471 5	1 572	0 068 94	423.3	464 7	1 4 9 9	0.04858	417.1	455.9 456 7	1.437 1.440
340	0.1130	445.5	490.7	1.629	0.072 08	441.2	484.5	1.558	0.051 38	436.3	477.4	1.502
350	0.1171	463.4	510.2	1.686	0.075 12	459.4	504.5	1.616	0.053 93	455.1	498.2	1.562
300	0.1212	481.6 500.3	530.1 550.5	1.742	0.07808	478.0 497.0	524.9 545.6	1.673	0.05637	474.1 493.4	519.2 540.4	1.621
380	0.129 3	519.5	571.2	1.853	0.083 82	516.4	566.6	1.786	0.06102	513.0	561.8	1.736
390 400	0.1332	539.1	592.3	1.908	0.08662	536.1	588.1	1.842	0.063 25	533.0	583.6	1.793
410	0.1372	579.5	635.9	2.017	0.09212	576.9	632.1	1.952	0.063 43	555.4 574.1	628.2	1.849
420	0.1450	600.4	658.3	2.071	0.094 82	597.9	654.7	2.007	0.069 72	595.3	651.0	1.959
430 440	0.1488 0.1527	621.6 643.4	681.2 704 4	2.124	0.09750	619.3 641 1	677.8 701 2	2.061	0.07182 0.07389	616.8 638 7	674.3 697 8	2.014
450	0.1565	665.5	728.1	2.231	0.1028	663.3	725.0	2.168	0.075 95	661.1	721.8	2.122
460	0.1603	688.0	752.2	2.284	0.1054	685.9	749.2	2.221	0.0 77 98	683.8	746.2	2.176

Table II. Isobaric Thermodynamic Properties of Isobutane $^{a, b}$

				S. kJ/				S. kJ/				S. kJ/
<i>T</i> . K	v, m ³ /kg	$U_{\rm t}$ kJ/kg	H, kJ/kg	(kg K)	$v_{\rm m}$ m ³ /kg	$U_{\rm t} {\rm kJ/kg}$	H, kJ/kg	(kg K)	$v, m^3/kg$	U, kJ/kg	H. kJ/kg	(kg K)
470	0.164 1	711.0	776.6	2.337	0.1080	70 9 .0	773.8	2.274	0.08000	706.9	770. 9	2.229
480	0.167 9	734.4	801.5	2.389	0.1106	732.4	798.8	2.327	0.08200	730.4	796.0	2.282
490	0.1716	758.1	826.8	2.441	0.1132	756.2	824.2	2.379	0.083 99	754.3	821.5	2.334
500	0.1754	782.3	852.4	2.493	0.115 8	780.5	849.9	2.431	0.085 97	778.6	847.4	2.386
510	0.1792	806.8	878.5	2.544	0.1183	805.1	876.1	2.483	0.087.94	803.3	873.7	2.438
520	0 182 9	831 7	904 9	2 596	0 120 9	830 1	902.6	2 5 3 5	0.089.90	878 3	900.3	2 490
520	0.1025	957 1	0217	2.370	0.1209	855 4	020.5	2.555	0.00790	020.5	900.3	2.730
530	0.1000	037.1	951.7	2.047	0.1234	0011	929.3	2.300	0.091 65	033.0	921.2	2.341
540	0.1904	882.7	958.9	2.698	0.1260	881.1	956.7	2.637	0.093 /9	8/9.5	954.6	2.593
550	0.194 1	908.8	986.4	2.748	0.1285	907.2	984.3	2.687	0.095 73	905.7	982.2	2.643
560	0.1978	935.2	1014.3	2.798	0.1310	933.7	1012.3	2.738	0.097 65	932.2	1010.3	2.694
570	0.2015	961.9	1042.5	2.848	0.1335	960.5	1040.6	2.788	0.09957	959.0	1038.7	2.744
580	0.205 2	989.0	1071.1	2.898	0.1361	987.6	1069.2	2.838	0.1015	986.2	1067.4	2.794
590	0.208.9	1016.5	1100.0	2 948	0 138 6	1015 1	1098.2	2 887	0 103 4	1013.2	1096.4	2 844
600	0.2126	1010.3	1120.2	2.240	0.1300	1013.1	1127.5	2.007	0.105 2	1015.2	1125 0	2.044
000	0.2120	1044.5	1129.5	2.991	0.1411	1042.9	1127.5	2.950	0.105 5	1041.5	1125.8	2.095
		Pressure =	1.0 MPa			Pressure =	1.2 MPa			Pressure =	1.4 MPa	
250	0.001647	-25.9	-24.2	-0.101	0.001646	-26.0	-24.0	-0 101	0 001 646	-26.2	-23.9	-0.102
260	0.001.677	-4.0	-2.3	0.015	0.001676	_4 1	-24.0	-0.015	0.001675		20.2	-0.016
200	0.001 709	102	20.0	0.015	0.001 707	10 2	2.1	-0.015	0.001 075	19.0	2.0	-0.010
270	0.001 708	10.5	20.0	0.070	0.001 707	10.2	20.2	0.009	0.001 700	10.0	20.4	0.008
280	0.001 /42	41.1	42.9	0.153	0.001 /41	40.9	43.0	0.152	0.001 740	40.7	43.2	0.151
290	0.001779	64.5	66.2	0.235	0.001778	64.2	66.4	0.234	0.001777	64.0	66.5	0.233
300	0.001820	88.4	90.2	0.316	$0.001\ 818$	88.1	90.3	0.315	$0.001\ 816$	87.9	90.4	0.314
310	0.001 864	113.0	114.8	0.397	0.001 862	112.7	114.9	0.396	0.001860	112.4	115.0	0.395
320	0.001 914	138.3	140.2	0.477	0.001 912	138.0	140.3	0.476	0.001 909	137.7	140.3	0.475
330	0.001.971	164.5	166.5	0.558	0.001.968	164 1	166.5	0.557	0.001.965	163 7	166.5	0.556
330 30	0.002.033	190.0	102.0	0.634	0.001/00	10111	100.5	0.007	0.001/00	100.7	100.5	0.000
559.59	0.002033	190.0	192.0	0.034								
339.39	0.03853	429.4	467.9	1.447								
340	0.038.68	430.6	469.2	1.451	0.002.033	191.2	193.6	0.638	0.002.029	190.7	193.6	0.637
347 77	0.000000	10010		1	0.002.092	213.0	215.5	0.702	0.002029	1900	175.0	0.037
541.11					0.002092	215.0	215.5	0.702				
347.77					0.03170	439.7	477.8	1.456				
350	0.041.02	450.1	491 1	1 5 1 5	0.032.19	444 3	482 9	1 471	0.002.105	218.9	221.8	0.718
355 10	0.01102	450.1	121.1	1.010	0.00219	111.5	402.7	1 1	0.002 103	2210.9	221.0	0.767
555.19									0.002 131	234.0	237.0	0.762
355.19									0.026 73	448.6	486.0	1.463
360	0.043.21	469 7	512.9	1 576	0.034.27	464 7	505.9	1 5 3 5	0.027.72	459.0	497.8	1 4 9 6
370	0.045.27	400.1	524 7	1.676	0.034.20	495 1	5 7 9 5	1.507	0.027 72	490.0	501.6	1.400
290	0.047.27	-02	5567	1.030	0.030 20	405.1	520.5	1.597	0.02939	400.2	521.0	1.501
380	0.04/26	509.4	336.7	1.694	0.038.00	505.5	551.1	1.657	0.03131	501.2	545.1	1.623
390	0.04917	529.7	578.9	1.752	0.03972	526.2	573.8	1.716	0.03292	522.3	568.4	1.684
400	0.05103	550.3	601.3	1.809	0.04138	547.0	596.7	1.774	0.034 44	543.6	591.8	1.743
410	0.05285	571.2	624.1	1.865	0.04299	568.2	619.8	1.831	0.035 90	565.1	615.3	1.801
420	0.054 64	592.6	647.2	1.921	0.044 55	589.8	643.2	1.888	0.03732	586.8	639.1	1.858
430	0.056 39	614.3	670.6	1 976	0.046.08	611.6	666.9	1 944	0.038.69	608.9	663.0	1 915
440	0.05811	636.3	694.4	2 031	0.047.58	633.8	600.0	1 000	0.020.02	631.3	697.3	1.071
450	0.050 92	650.0	7196	2.051	0.047.50	656 4	715.2	2.052	0.04005	654.0	711.0	1.971
430	0.03982	030.0	/10.0	2.085	0.049.03	636.4	715.5	2.053	0.04135	654.0	/11.9	2.026
460	0.06150	681.6	743.1	2.139	0.050.50	6/9.4	740.0	2.108	0.04264	677.1	/36.8	2.081
470	0.06317	704.8	768.0	2.192	0.05194	702.7	765.0	2.162	0.043 91	700.5	762.0	2.135
480	0.064 82	728.4	793.3	2.245	0.053 35	726.4	790.4	2.215	0.045 16	724.3	787.5	2.189
490	0.066 45	752.4	818.9	2.298	0.054 76	750.5	816.2	2.268	0.046 39	748.5	813.4	2.242
500	0.06808	776.8	844.9	2.351	0.056 15	774.9	842.3	2.321	0.047 62	773.0	839.6	2.295
510	0.069 69	801.5	871.2	2.403	0.05752	799.7	868.7	2.373	0.048 83	797.9	866.2	2.348
520	0.07130	826.6	897.9	2.455	0.058 89	824.9	895.5	2.425	0.050.03	823 1	893 1	2 400
530	0.072 89	852.1	925.0	2.506	0.060 25	850.4	9227	2 477	0.051 22	848 7	920.4	2 4 5 2
540	0.07448	877 9	9524	2 558	0.061.60	876 3	950.2	2 5 2 8	0.05240	874 6	94 Q A	2 502
550	0.076.05	904 1	080 1	2 600	0.062.04	0025	978 0	2.520	0.052.40	000 0	075 0	2.203
560	0 077 42	0304.1	1009.2	2.009	0.002 34	02.0	1004 2	2.000	0.03337	200.7 017 c	JIJ.J 1004 0	2.333
570	0.077.02	950.0	1008.3	2.039	0.004 27	929.1	1006.2	2.650	0.03473	921.3	1004.2	2.606
570	0.0/919	73/.3	1030./	2.710	0.005.60	930.0	1034.7	2.681	0.055 89	954.5	1032.8	2.656
580	0.080 75	984.7	1065.5	2.760	0.066 92	983.3	1063.6	2.731	0.057 04	981.8	1061.7	2.706
590	0.08230	1012.3	1094.6	2.809	0.068 23	1010.9	1092.8	2.781	0.05819	1009.5	1090.9	2.756
6 00	0.083 85	1040.2	1124.0	2.859	0.069 54	1038.8	1122.3	2.830	0.059 32	1037.4	1120.5	2.806
		D=0.001=0	1 4 MDa			D	1 0 MD-			D	2.0 MD	
250	0.001.646		1.0 MIPa	0 103	0.001.044	1 1055010 =		0 100	0.001.040	r ressure =	2.0 MPa	0 100
230	0.001643	-20.3	-23.1	-0.102	0.001644	-20.4	-23.5	-0.103	0.001 643	-26.6	-23.3	-0.103
260	0.001674	-4.5	-1.8	-0.016	0.001673	-4.6	-1.6	-0.017	0.001672	-4.8	-1.4	-0.018
270	0.001705	17.8	20.5	0.068	0.001 704	17.6	20.7	0.067	0.001703	17.5	20.9	0.066
280	0.001 739	40.6	43.3	0.151	0.001 738	40.4	43.5	0.150	0.001737	40.2	43.6	0.149
290	0.001 775	63.8	66.6	0.232	0.001774	63.6	66.8	0.232	0.001773	63.4	66.9	0.231
300	0.001 815	87.6	90.5	0.313	0.001 813	87.4	90.7	0.313	0.001812	87.2	90.8	0.312
310	0.001 859	112.1	115.1	0.394	0.001.857	111.8	115.2	0 202	0.001.855	1116	115 3	0 302
320	0.001 907	137 3	140.4	0 474	0 001 905	137 0	1404	0 472	0 001 003	126 7	140.5	0 472
330	0 001 967	162 2	166 5	0.57/7	0.001.000	1620	140.4	0.7/3	0.001 903	162.6	140.3	0.472
340	0.001.002	100.0	102 5	0.004	0.001 939	103.0	100.3	0.555	0.001 930	102.0	100.3	0.332
250	0.002023	170.3	123.3	0.033	0.002.021	109.0	193.4	0.034	0.002.018	189.4	193.4	0.632
330	0.002100	218.3	221.7	0.717	0.002.095	217.7	221.5	0.715	0.002.090	217.2	221.4	0./14
360	0.002 192	247.7	251.3	0.800	0.002 185	247.0	250.9	0.798	$0.002\ 177$	246.3	250.7	0.796
361.86	0.002 212	253.4	257.0	0.816								
361 96	0 022 04	456 2	102 0	1 160								
201.00	0.042.74	-50.5	-755.U	1.400								

Table II (CC	minuca)											
Т, К	υ, m³/kg	U, kJ/kg	H, kJ/kg	S, kJ/ (kg K)	v, m³/kg	U, kJ/kg	H, kJ/kg	S, kJ/ (kg K)	<i>v</i> , m³/kg	U, kJ/kg	<i>H</i> , kJ/kg	S, kJ/ (kg K)
367.94					0.002 275	271.6	275.7	0.866	,			
367.94					0.019 95	463.0	498.9	1.473				
370	0.024 50	474.6	513.8	1.525	0.02035	468.0	504.6	1.488	0.002 291	277.2	281.8	0.881
373.54									0.002 341	288.8	293.5	0.913
373.54									0.017 51	468.8	503.8	1.476
380	0.026 20	496.5	538.4	1.591	0.02212	491.1	531.0	1.558	0.01871	484.9	522.3	1.525
390	0.027 75	518.2	562.6	1.654	0.02366	513.6	556.2	1.624	0.02030	508.6	549.2	1.595
400	0.029 19	539.9	586.6	1.714	0.025 06	535.9	581.0	1.687	0.02170	531.6	575.0	1.660
410	0.030 56	561.7	610.6	1.774	0.026 37	558.2	605.6	1.748	0.022 98	554.3	600.3	1.723
420	0.03187	583.7	634./	1.832	0.02/61	580.5 602 1	630.2	1.807	0.024 17	5//.1	625.4	1.783
430	0.033 13	628.6	683.6	1.009	0.02879	625.9	6797	1.803	0.025 30	623.0	675.8	1.042
450	0.03556	651.5	708.4	2.001	0.031 05	648.9	704.8	1.978	0.02743	646.3	701.1	1.957
460	0.036 73	674.7	733.5	2.056	0.03213	672.3	730.1	2.034	0.028 44	669.8	726.7	2.013
470	0.037 88	698.3	758.9	2.111	0.033 18	696.0	755.7	2.089	0.029 42	693.7	752.5	2.069
480	0.039 01	722.2	784.6	2.165	0.034 22	720.0	781.6	2.144	0.03038	717.8	778.6	2.124
490	0.04012	746.4	810.6	2.219	0.035 24	744.4	807.8	2.198	0.031 33	742.3	804.9	2.178
500	0.04122	796.0	837.0	2.272	0.036 24	704.1	834.3	2.251	0.03225	707.1	831.0	2.232
520	0.04338	821.3	890.7	2.323	0.037 23	819.5	888.3	2.357	0.033.17	817.7	885.9	2.285
530	0.044 44	847.0	918.1	2.429	0.039 17	845.2	915.7	2.409	0.034 95	843.4	913.4	2.391
540	0.045 50	873.0	945.8	2.481	0.040 13	871.3	943.5	2.461	0.035 83	869.6	941.2	2.443
550	0.046 54	899.3	973.8	2.533	0.04108	897.7	971.6	2.513	0.036 70	896.0	969.4	2.495
560	0.04758	926.0	1002.1	2.584	0.04201	924.4	1000.0	2.564	0.037 56	922.8	998.0	2.546
570	0.04861	953.0	1030.8	2.634	0.04295	951.5	1028.8	2.615	0.038 42	950.0	1026.8	2.597
580	0.04963	980.4 1008.0	1039.8	2.685	0.04387	9/8.9	1057.9	2.005	0.03926	977.4	1055.9	2.648
600	0.05065	1006.0	1118 7	2.735	0.044 79	1034 7	1007.2	2.710	0.04010	1005.2	1065.4	2.098
000	0.00100	1000.0		2.700	0.01070	1004.7	1110.5	2.700	0.040.04	1055.5	1113.1	2.740
250	0 001 642	Pressure = 26.7	2.2 MPa	0 104	0.001.642	Pressure =	2.4 MPa	0.105	0.001.641	Pressure = 27.0	2.6 MPa	0.105
250	0.001 643	-20.7 _4 Q	-23.1	-0.104	0.001642	-20.9		-0.105	0.001641	-27.0	-22.7 _0 9	-0.105
270	0.001702	17.3	21.0	0.066	0.001 702	17.1	21.2	0.065	0.001 701	17.0	21.4	0.065
280	0.001736	40.0	43.8	0.149	0.001735	39.8	43.9	0.148	0.001733	39.6	44.1	0.147
290	0.001771	63.2	67.1	0.230	0.001 770	62.9	67.2	0.229	0.001 769	62.7	67.3	0.229
300	0.001 810	86.9	90.9	0.311	0.001 809	86.7	91.0	0.310	0.001 807	86.4	91.1	0.309
310	0.001 853	111.3	115.4	0.391	0.001 851	111.0	115.5	0.390	0.001 849	110.8	115.6	0.389
320	0.001900	150.4	140.5	0.471	0.001 898	130.1	140.0	0.470	0.001 896	161.5	140.7	0.469
340	0.002014	188.9	193.4	0.631	0.002.011	188.5	193.3	0.630	0.002.007	188.1	193.3	0.629
350	0.002 085	216.6	221.2	0.712	0.002080	216.1	221.1	0.710	0.002 076	215.6	221.0	0.709
360	$0.002\ 171$	245.6	250.4	0.794	0.002 164	245.0	250.2	0.792	0.002158	244.3	249.9	0.790
370	0.002 280	276.3	281.3	0.879	0.002270	275.4	280.9	0.876	0.002260	274.6	280.4	0.874
378.74	0.002412	305.3	310.6	0.957								
378.74	0.015 47	473.8	507.8	1.478								
380	0.015 73	477.2	511.8	1.488	0.002417	308.4	314.2	0.965	0.002400	307.1	313.3	0.962
383.59					0.002 490	321.2	327.2	0.999				
383.59					0.013 74	477.9	510.9	1.478				
388.14									0.002577	336.7	343.4	1.040
388.14									0.012 22	481.2	513.0	1.477
390	0.01746	502.7	541.2	1.565	0.014 96	495.8	531.7	1.532	0.01263	487.1	519.9	1.495
400	0.01890	526.8	568.4	1.633	0.016 49	521.4	561.0	1.606	0.014 36	515.2	552.6	1.577
410	0.020 17	550.2	594.6	1.698	0.01779	545.8	588.5	1.674	0.01572	540.8	581.7	1.649
420	0.021 34	573.5	620.4	1.760	0.018 95	569.6	615.1	1.738	0.016 89	565.4	609.4	1.716
430	0.02243	596.7	640.0	1.821	0.02001	593.2	641.3	1.800	0.01/95	589.6	630.3	1.779
440	0.02340	643.5	6973	1.000	0.021.02	640.7	693.4	1.000	0.01095	637.7	689 3	1.040
460	0.02541	667.3	723.2	1.994	0.022 88	664.6	719.5	1.976	0.02073	661.9	715.8	1.958
470	0.026 34	691.3	749.2	2.050	0.023 76	688.8	745.8	2.032	0.02158	686.3	742.4	2.015
480	0.027 24	715.5	775.5	2.105	0.024 62	713.2	772.3	2.088	0.022 40	710.9	769.1	2.072
490	0.028 12	740.1	802.0	2.160	0.025 45	737.9	799.0	2.143	0.023 19	735.7	796.0	2.127
500	0.02899	765.0	828.8	2.214	0.026 27	763.0	826.0	2.198	0.02397	760.9	823.2	2.182
510	0.029 84	790.2 815 8	8833	2.268	0.02707	/ 88.3 812 0	833.2 880 8	2.252	0.02472	/86.3 812 0	500.6 878 0	2.236 2.290
530	0.03150	841.7	911.0	2.374	0.02863	839.9	908.6	2.358	0.026 20	838.0	906.1	2.343
540	0.03232	867.9	939.0	2.426	0.02939	866.1	936.7	2.410	0.026 91	864.4	934.4	2.396
550	0.033 13	894.4	967.3	2.478	0.030 14	892.7	965.1	2.463	0.027 62	891.0	962.9	2.448
560	0.033 92	921.2	995.9	2.530	0.03089	919.6	993.8	2.514	0.02832	918.0	991.6	2.500
570	0.03471	948.4 075 0	1024.8	2.581	0.03162	946.9 071 1	1022.8	2.566	0.029.01	945.3	1020.7	2.551
590	0.036 27	1003.7	1083.5	2.682	0.032 33	1002.3	1032.1	2.667	0.02970	1000.8	1079.8	2.603
600	0.037 04	1031.9	1113.3	2.732	0.033 79	1030.4	1111.5	2.717	0.031 04	1029.0	1109.7	2.704

Table II (Continued)

Т, К	v, m³/kg	U, kJ/kg	H, kJ/kg	S, kJ/ (kg K)	v, m³/kg	U, kJ/kg	H, kJ/kg	S, kJ/ (kg K)	v, m³/kg	U, kJ/kg I	H, kJ/kg	S, kJ/ (kg K)
		Pressure =	2.8 MPa	-		Pressure =	3.0 MPa			Pressure = 3	.2 MPa	
250 260	0.001640	-27.1	-22.5	-0.106 -0.020	0.001640	-27.3 -5.5	-22.3	-0.106 -0.021	0.001639	-27.4 -5.7	-22.2 -0.3	-0.107 -0.021
270	0.011700	16.8	21.6	0.064	0.001669	16.6	21.7	0.063	0.001 698	16.5	21.9	0.063
280	0.001732	39.4 62.5	44.3 67.5	0.147	0.001731	39.2 62 3	44.4 67.6	0.146	0.001730	39.0 62.1	44.6 67.8	$0.145 \\ 0.227$
300	0.001 708	86.2	91.3	0.228	0.001 804	86.0	91.4	0.308	0.001 803	85.7	91.5	0.307
310	0.001 848	110.5	115.7	0.389	0.001 846	110.2	115.8	0.388	0.001 844	110.0	115.9	0.387
320 330	0.001 894	135.4	140.7 166.6	0.468	0.001 892	135.1	140.8 166.6	0.467	0.001 890	134.8	140.9	0.466 0.546
340	0.002 004	187.6	193.3	0.627	0.002 001	187.2	193.2	0.626	0.001 997	186.8	193.2	0.625
350 360	0.002 071	215.1 243 7	220.9 249 7	0.707	0.002 067	214.6 243.1	220.8 249.5	0.706	0.002 063	214.1 242.5	220.7 249.3	0.705
370	0.002 251	273.7	280.0	0.872	0.002 243	272.9	279.7	0.869	0.002 234	272.2	279.3	0.867
380 390	0.002 384	305.9	312.5	0.958	0.002 370	304.7 339 9	311.8 347.6	0.955	0.002357	303.6 338.1	31 <u>1</u> .2 346 3	0.952
392.43	0.002676	352.1	359.6	1.080	0.002 505	557.7	547.0	1.040	0.002000	550.1	540.5	1.015
392.43	0.01088	483.5	514.0	1.474								
396.49					0.002793	367.4	375.8	1.120				
396.49 400	0.012.42	507.8	542.6	1 546	0.009652	484.8	513.7 529.8	1.468	0.002.916	381.3	390.6	1.156
400.33	0.012 72	507.8	542.0	1.540	0.01035	490.2	529.0	1.500	0.002 941	383.2	392.6	1.160
400.33									0.008 501	484.5	511.7	1.458
410 420	0.013 89	535.3 560 0	574.2 603 2	1.624 1.694	0.01223 0.01351	529.0 556.0	565.7 596 5	1.597 1.671	0.01068 0.01207	521.4 550 4	555.5 589.1	1.566 1.647
430	0.015 16	585.7	631.0	1.759	0.014 59	581.6	625.4	1.739	0.013 19	577.1	619.3	1.718
440	0.017 13	610.2	658.2	1.822	0.01556	606.6	653.3	1.803	0.014 17	602.8 628.1	648.1 676.2	1.785
450	0.018 03	659.1	712.0	1.882	0.017 28	656.2	708.0	1.925	0.015 87	653.2	703.9	1.909
470	0.01970	683.7	738.8	1.999	0.018 07	681.0	735.2	1.983	0.016 64	678.2	731.5	1.968
480 490	0.02049	708.4	765.8	2.056	0.01883	706.0	762.5	2.041 2.097	0.01738	703.4 728.8	759.0	2.026
500	0.02199	758.7	820.3	2.167	0.020 28	756.5	817.4	2.153	0.01878	754.3	814.4	2.139
510 520	$0.02271 \\ 0.02342$	784.2	847.8 875.6	2.222	0.020 97	782.2	845.1 873.0	2.208	0.01944	780.1 806 1	842.3 870.4	2.194
530	0.023 42	836.2	903.7	2.329	0.02230	834.3	901.2	2.316	0.020 72	832.4	898.7	2.303
540	0.024 79	862.6	932.0	2.382	0.022 95	860.8	929.7	2.369	0.02134	859.0	927.3	2.356
550	0.02546	916.4	960.6 989.5	2.434	0.023 39	914.7	938.4 987.4	2.421	0.021 95	913.1	936.1 985.2	2.409
570	0.026 78	943.7	1018.7	2.538	0.024 84	942.1	1016.6	2.525	0.023 14	940.5	1014.6	2.513
580 590	0.02742	971.4 999.3	1048.2	2.589	0.02545	969.8 997.9	1046.2 1076.0	2.577	0.02372	968.3 996.4	1044.2	2.565
600	0.028 69	1027.6	1107.9	2.691	0.026 65	1026.2	1106.1	2.678	0.024 87	1024.7	1104.3	2.667
		Pressure =	3.4 MPa			Pressure =	3.6 MPa			Pressure = 3.	8 MPa ^c	
250 260	0.001638	-27.5	-22.0	-0.107	0.001638	-27.7	-21.8	-0.108	0.001637	-27.8	-21.6	-0.108 -0.023
270	0.001697	16.3	22.1	0.062	0.001 696	16.1	22.2	0.061	0.001695	16.0	22.4	0.025
280	0.001729	38.9	44.7	0.144	0.001 728	38.7	44.9	0.144	0.001727	38.5	45.1	0.143
300	0.001 784	85.5	91.6	0.226	0.001 783	85.3	91.8	0.225	0.001782	85.0	91.9	0.224
310	0.001 843	109.7	116.0	0.386	0.001 841	109.4	116.1	0.385	0.001 839	109.2	116.2	0.384
320 330	0.001 888	134.5	141.0	0.465	0.001 886	134.2	141.0	0.464	0.001 884	133.9	141.1 166.8	0.463
340	0.001 994	186.4	193.2	0.624	0.001 991	186.0	193.2	0.622	0.001 988	185.6	193.2	0.621
350 360	0.002059	213.6	220.6 249.2	0.703	0.002055	213.2	220.6 249.0	0.702	0.002051	$\begin{array}{c} 212.7 \\ 240.8 \end{array}$	220.5 248.8	0.700
370	0.002 226	271.4	279.0	0.865	0.002 219	270.7	278.7	0.863	0.002 212	270.0	278.4	0.861
380 390	0.002 344	302.6	310.6 345_1	0.950	0.002333	301.7	310.1 344 0	0.947	0.002 322	300.7	309.5 343.0	0.944
400	0.002 821	376.7	386.3	1.143	0.002 757	373.4	383.3	1.135	0.002 709	370.7	381.0	1.127
403.97	0.003 146	400.1	410.8	1.204								
403.97 410	0.007365	481.9	507.0 542.7	1.442	0 007 462	1070	572 8	1 4 90	0 003 609	420 0	442 7	1 282
420	0.01075	544.1	580.7	1.622	0.009 502	536.8	571.0	1.594	0.008 292	527.8	559.3	1.562
430	0.011 93	572.2	612.8	1.697	0.01078	566.9	605.7	1.676	0.009 710	560.9	597.8	1.652
450	0.01292	624.5	671.5	1.766	0.01180	594.4 620.8	656.9 666.5	1.747	0.01078	616.9	661.3	1.728
460	0.014 62	650.0	699.7	1.893	0.013 50	646.8	695.4	1.877	0.01250	643.4	690.8	1.862
470 480	0.01538	6/5.4 700.8	755.6	1.953	0.014 25 0.014 96	672.5 698.1	723.8 752.0	1.938	0.013 24 0.013 93	669.4 695.4	719.7 748.3	1.924
490	0.016 79	726.4	783.4	2.069	0.015 63	723.9	780.1	2.056	0.014 59	721.4	776.8	2.043
500 510	0.01745	752.1 778.0	811.4 839.5	$2.126 \\ 2.181$	0.016 27	749.8/ 775.8	808.3 836.6	2.113 2.169	0.015 22 0.015 82	747.4 773.6	805.2 833.7	2.100 2.157

				<i>S</i> , kJ/	• .			<i>S</i> , kJ/	1 //			<i>S</i> , kJ/
Т, К.	v, m³/kg	U, kJ/kg	H, kJ/kg	(kg K)	v, m³/kg	U, kJ/kg	H, kJ/kg	(kg K)	v, m³/kg	U, kJ/kg	H, kJ/kg	(kg K)
520	0.018 72	804.1	867.8	2.236	0.017 50	802.1	865.1	2.224	0.016 41	800.0	862.4	2.212
530	0.01933	830.5	896.2	2.290	0.01809	828.6	893.7	2.279	0.016 98	826.6	891.2	2.267
540	0.019 92	957.2	924.9	2.344	0.01866	855.4	922.5	2.333	0.017 53	853.5	920.1	2.321
550	0.02051	884.2	953.9	2.397	0.019 22	882.4	951.6	2.386	0.018 08	880.6	949.3	2.375
560	0.02108	911.4	983.1	2.450	0.01978	909.7	980.9	2.439	0.018 61	908.0	978.7	2.428
570	0.02165	938.9	1012.5	2.502	0.02032	937.3	1010.5	2.491	0.01913	933.7	1008.4	2.480
580	0.022.20	900.8	1042.2	2.554	0.020 85	903.Z	1040.5	2.545	0.019 64	903.0	1058.5	2.332
590	0.02275	1023.3	1102.2	2.003	0.021 38	1021.8	1100 7	2.554	0.02015	1020 4	1008.4	2.504
000	0.025 50	1023.3	1102.5	2.000	0.021 90	- 1021.0	1100.7	2.010	0.020 00	1020.1	102010	2.000
250	0.001.020	Pressure =	4.0 MPa	0 100	0.001.000	Pressure =	4.2 MPa	0.110	0 001 625	Pressure =	4.4 MPa	0.110
250	0.001 636	-27.9	-21.4	-0.109	0.001636	~ 20.1	-21.2	-0.110	0.001655	-20.2	-21.0	-0.110
200	0.001604	-0.5	22.6	-0.024	0.001604	15.6	227	0.024	0.001 603	0.0	229	-0.023
280	0.001726	38.3	45.2	0.000	0.001 725	38.1	45.4	0.000	0.001 724	37.9	45.5	0.141
290	0.001 761	61.3	68.3	0.224	0.001 759	61.1	68.5	0.223	0.001758	60.9	68.6	0.222
300	0.001 798	84.8	92.0	0.304	0.001796	84.6	92.1	0.303	0.001 795	84.4	92.3	0.302
310	0.001 838	108.9	116.3	0.383	0.001 836	108.7	116.4	0.383	0.001 835	108.4	116.5	0.382
320	0.001882	133.7	141.2	0.463	0.001 880	133.4	141.3	0.462	0.001878	133.1	141.3	0.461
330	0.001 931	159.1	166.8	0.541	0.001 928	158.8	166.8	0.540	0.001926	158.4	166.9	0.539
340	0.001 985	185.3	193.2	0.620	0.001 982	184.9	193.2	0.619	0.001979	184.5	193.2	0.618
350	0.002 04 /	212.3	220.5	0.699	0.002043	211.8	220.4	0.098	0.002 040	211.4	220.4	0.697
300	0.002 119	240.2	240.7	0.779	0.002114	259.7	240.0	0.777	0.002109	259.2	240.4	0.776
380	0.002.203	299.8	309.1	0.037	0.002 100	299.0	308.6	0.037	0.002 292	298.1	308.2	0.830
390	0.002453	332.4	342.2	1.028	0.002 437	331.2	341.4	1.025	0.002 422	330.0	340.7	1.021
400	0.002 669	368.4	379.1	1.121	0.002635	366.4	377.5	1.116	0.002 606	364.6	376.1	1.111
410	0.003 182	415.5	428.2	1.242	0.003 031	409.2	422.0	1.226	0.002936	405.0	417.9	1.214
420	0.007 057	515.9	544.2	1.522	0.005 710	498.5	522.5	1.467	0.004 373	473.7	492.9	1.395
430	0.008 711	554.1	589.0	1.628	0.007 761	546.3	578.9	1.600	0.006 846	537.0	567.1	1.570
440	0.009 843	584.7	624.1	1.708	0.008 978	579.2	616.9	1.688	0.008 172	573.1	609.1	1.666
450	0.01077	620.9	633.9	1.780	0.009 934	636 1	630.1	1.703	0.009 164	603.7	644.1	1.745
400	0.01138	666.3	715.6	1 010	0.01076	663.1	7113	1.051	0.009997	659.7	706.0	1.813
480	0.013 01	692.6	744.6	1.971	0.012 17	689.7	740.8	1.958	0.01141	686.7	736.9	1 945
490	0.01365	718.8	773.4	2.030	0.012 81	716.1	769.9	2.018	0.012 04	713.4	766.4	2.005
500	0.014 27	745.0	802.1	2.088	0.013 41	742.6	798.9	2.076	0.01263	740.1	795.7	2.065
510	0.014 86	771.4	830.8	2.145	0.013 99	769.1	827.9	2.134	0.013 20	766.8	824.9	2.122
520	0.015 43	797.9	859.6	2.201	0.014 54	795.8	856.9	2.190	0.013 74	793.7	854.1	2.179
530	0.015 98	824.7	888.6	2.256	0.015 08	822.7	886.0	2.245	0.014 26	820.6	883.4	2.235
540	0.016.52	831.0	917.7	2.311	0.015 60	849./	915.3	2.300	0.014 77	847.8	912.8	2.290
560	0.017.04	9063	947.0	2.504	0.01611	004 6	944.7 071 1	2.334	0.015 27	8/3.2	942.4	2.344
570	0.018.06	934.1	1006.3	2.470	0.017 10	932.4	1004.2	2.400	0.016 22	930.7	1002 1	2.358
580	0.018 56	962.1	1036.3	2.522	0.017 58	960.5	1034.3	2.513	0.016 69	958.9	1032.3	2.503
590	0.019 05	990.3	1066.5	2.574	0.018 05	988.8	1064.6	2.565	0.017 14	987.3	1062.7	2.555
600	0.01953	1018. 9	1097.0	2.625	0.018 51	1017.4	1095.2	2.616	0.017 59	1016.0	1093.4	2.607
		Pressure =	4.6 MPa			Pressure =	4.8 MPa			Pressure =	5.0 MPa	
250	0.001634	-28.3	-20.8	-0.111	0.001 634	-28.5	-20.6	-0.111	0.001633	-28.6	-20.4	-0.112
260	0.001 662	-6.7	0.9	-0.025	0.001661	-6.9	1.1	-0.026	0.001661	7.0	1.3	-0.026
270	0.001692	15.3	23.1	0.058	0.001691	15.2	23.3	0.058	0.001690	15.0	23.4	0.057
280	0.001723	37.8	45.7	0.141	0.001722	37.6	45.9	0.140	0.001721	37.4	46.0	0.139
290	0.001 757	0U./ 9/1	08.8	0.222	0.001 756	0U.3 82 0	00.9	0.221	0.001 755	00.3 93 7	09.1 02.7	0.220
310	0.001 /94	108.2	92. 4 116.6	0.302	0.001 /92	03.9 107 Q	52.3 116 7	0.301	0.001 /91	1077	116.8	0.300
320	0.001 876	132.8	141.4	0.460	0.001 874	132.5	141.5	0.459	0.001 872	132.2	141.6	0.458
330	0.001 924	158.1	167.0	0.538	0.001 921	157.8	167.0	0.537	0.001 919	157.5	167.1	0.536
340	0.001977	184.1	193.2	0.617	0.001974	183.8	193.2	0.616	0.001971	183.4	193.3	0.614
350	0.002 036	210.9	220.3	0.695	0.002033	210.5	220.3	0.694	0.002029	210.1	220.2	0.693
360	0.002 105	238.6	248.3	0.774	0.002 100	238.1	248.2	0.773	0.002 096	237.6	248.1	0.771
370	0.002 185	267.4	277.4	0.854	0.002179	266.8	277.2	0.852	0.002 174	266.2	277.0	0.850
380	0.002.283	297.3	307.8	0.935	0.002275	296.6	307.5	0.933	0.002266	295.8	307.1	0.931
290 400	0.002408	320.9 363 0	340.0	1 107	0.002 333	361 5	2727	1 102	0.002382	320.9 360 0	558.8 377 7	1 000
410	0.002 868	401.6	414.8	1.205	0.002 814	398.9	412.4	1.198	0.002 769	396.5	410.3	1,192
420	0.003 683	455.9	472.8	1.345	0.003 387	446.3	462.6	1.319	0.003 220	440.1	456.2	1.302
430	0.005 967	525.9	553.4	1.535	0.005 156	513.2	537.9	1.496	0.004 493	500.2	522.7	1.459
440	0.007 418	566.4	600.6	1.643	0.006 715	559.1	591.3	1.619	0.006 063	551.0	581.3	1.593
450	0.008453	598.8	637.6	1.727	0.007 795	593.4	630.8	1.708	0.007 185	587.8	623.7	1.689
460	0.009301	628.2	671.0	1.800	0.008 660	623.9	665.5	1.784	0.008068	619.4	659.8	1.768
4/0	0.01004	030.2 682 6	102.4 730 0	1.000	0.009403	032.0 680 5	07/.8 9/.8	1.833	0.000 819	048.9 677 7	073.U 774 f	1.039
490	0.01133	710 7	762.8	1.993	0.01069	707.8	759.2	1.981	0.010 10	705.0	7554	1.970
500	0.01192	737.6	792.4	2.053	0.011 27	735.0	789.1	2.042	0.010 67	732.4	785.7	2.031
510	0.01247	764.5	821.9	2.111	0.011 81	762.1	818.8	2.101	0.011 20	759.7	815.7	2.090
520	0.013 00	791.5	851.3	2.169	0.01233	789.3	848.5	2.158	0.01172	787.0	845.6	2.148

т ¥	11 m ³ /kg	U ki/ka	H bl/ba	S, kJ/	11 m ³ /kg	// k1/ka	H k1/ka	S, kJ/	1) m ³ /kg	U kI/ka	H la L/lag	S, kJ/
1, K	0, 11 /Kg	0, KJ/Kg	11, KJ/Kg		0, 11 /Kg	016 5	11, KJ/Kg	(Kg K)	0, 11 /Kg	0, KJ/Kg	П, КЈ/К <u>е</u>	
530	0.013 52	818.6	880.8	2.225	0.012.83	816.5	878.1	2.215	0.012 21	814.5	875.5	2.205
550	0.014 01	845.9 873.4	910.4	2.280	0.013 32	844.0	907.9	2.270	0.012.68	842.0	905.4	2.201
560	0.014 96	901.1	970.0	2.388	0.014 24	899.4	967.7	2.379	0.013 58	897.6	965.5	2.370
570	0.015 42	929.1	1000.0	2.442	0.014 69	927.4	997.9	2.433	0.014 02	925.7	995.8	2.424
580	0.015 87	957.3	1030.3	2.494	0.015 13	955.7	1028.3	2.486	0.014 45	954.1	1026.3	2.477
590	0.016 32	985.8	1060.8	2.546	0.015 56	984.2	1058.9	2.538	0.014 86	982.7	1057.0	2.529
600	0.016 75	1014.5	1091.5	2.598	0.015 98	1013.0	1089.7	2.590	0.015 27	1011.5	1087.9	2.581
		Pressure =	5.2 MPa			Pressure =	5.4 MPa]	Pressure =	5.6 MPa	
250	0.001632	-28.7	-20.2	-0.112	0.001632	-28.9	-20.1	-0.113	0.001631	-29 .0	-19.9	-0.113
260	0.001660	-7.1	1.5	-0.027	0.001659	-7.3	1.7	-0.028	0.001 659	-7.4	1.9	-0.028
270	0.001689	14.8	23.6	0.057	0.001688	14.7	23.8	0.056	0.001688	14.5	24.0	0.055
280	0.001720	57.2 60.1	40.2	0.139	0.001 720	599	40.5	0.130	0.001719	59.9	40.5	0.157
300	0.001790	83.5	92.8	0.299	0.001 788	83.3	92.9	0.299	0.001 787	83.1	93.1	0.298
310	0.001 828	107.4	116.9	0.378	0.001 827	107.2	117.1	0.378	0.001 825	106.9	117.2	0.377
320	0.001 871	132.0	141.7	0.457	0.001 869	131.7	141.8	0.456	0.001 867	131.4	141.9	0.455
330	0.001917	157.2	167.1	0.535	0.001 915	156.8	167.2	0.534	0.001 913	156.5	167.3	0.533
340	0.001968	183.0	193.3	0.613	0.001 966	182.7	193.3	0.612	0.001963	182.3	193.3	0.611
360	0.002.020	209.7	220.2	0.091	0.002.023	209.5	220.2	0.090	0.002.020	208.9	220.2	0.089
370	0.002168	265.6	276.8	0.849	0.002 162	265.0	276.7	0.847	0.002 157	264.4	276.5	0.846
380	0.002 259	295.1	306.8	0.929	0.002 251	294.4	306.5	0.927	0.002 244	293.7	306.2	0.925
39 0	0.002 371	326.0	338.3	1.010	0.002 360	325.1	337.8	1.008	0.002 350	324.2	337.3	1.006
400	0.002 518	358.7	371.8	1.095	0.002501	357.5	371.0	1.092	0.002 484	356.3	370.2	1.089
410	0.002731	394.3	408.5	1.186	0.002699	392.4	407.0	1.181	0.002669	390.7	405.6	1.176
420	0.003 108	433.3	431.7 510.0	1.290	0.003024 0.003717	431.9	440.2 500.6	1.200	0.002938	420.0	443.4	1.272
440	0.005 473	542.3	570.8	1.567	0.004 961	533.5	560.3	1.541	0.004 537	525.1	550.5	1.516
450	0.006 622	581.7	616.2	1.669	0.006 107	575.4	608.4	1.649	0.005 641	568.8	600.4	1.628
460	0.007 521	614.8	653.9	1.752	0.007017	609.9	647.8	1.735	0.006 553	604.9	641.5	1.719
470	0.008 278	645.0	688.1	1.825	0.007 778	641.0	683.0	1.811	0.007 317	636.9	677.9	1.797
480	0.008 945	673.9	720.4	1.893	0.008445	670.5	716.1	1.881	0.007 983	667.0	711.7	1.868
490 500	0.009352	702.0	7823	2 0 2 0	0.009 048	727 0	74780	2 000	0.008 582	093.9 724 3	744.0	1.935
510	0.010 64	757.3	812.6	2.020	0.010 13	754.8	809.5	2.009	0.009 649	752.3	806.3	2.060
520	0.01115	784.8	842.8	2.138	0.01062	782.5	839.9	2.129	0.010 14	780.2	837.0	2.119
530	0.01163	812.3	872.8	2.196	0.011 09	810.2	870.1	2.186	0.01060	808.1	867.4	2.177
540	0.012 09	840.0	902.9	2.252	0.01155	838.0	900.4	2.243	0.01105	836.0	897.9	2.234
550	0.01254	867.8	933.0	2.307	0.011 99	865.9	930.7	2.298	0.01148	864.0	928.3	2.290
570	0.012.98	093.0 074 0	903.3	2.302	0.01241	894.0 0223	961.1	2.333	0.01189	892.2 920.6	938.9	2.345
580	0.013 82	952.5	1024.3	2.469	0.013 24	950.8	1022.3	2.461	0.012 30	949.2	1020.3	2.355
590	0.014 22	981.1	1055.1	2.521	0.013 63	979.6	1053.2	2.513	0.013 08	978.0	1051.3	2.506
6 00	0.014 62	1010.0	1086.1	2.573	0.014 02	1008.5	1084.2	2.566	0.013 46	1007.0	1082.4	2.558
		Pressure =	5.8 MPa			Pressure =	6.0 MPa			Pressure =	7 0 MPa	
250	0.001631	-29.1	-19.7	-0.114	0.001630	-29.3	-19.5	-0.114	0.001 627	-29.9	-18.5	-0.117
26 0	0.001658	-7.6	2.0	-0.029	0.001657	-7.7	2.2	-0.029	0.001654	-8.4	3.2	-0.032
270	0.001 687	14.4	24.1	0.055	0.001 686	14.2	24.3	0.054	0.001682	13.4	25.2	0.051
280	0.001718	36.7	46.7	0.137	0.001717	36.5	46.8	0.136	0.001712	35.7	47.7	0.133
300	0.001 731	39.3	937	0.217	0.001 749	39.3 82.6	09.0	0.217	0.001 744	58.4 81.6	70.6 94.0	0.213
310	0.001 824	106.7	117.3	0.376	0.001 823	106.5	117.4	0.375	0.001 816	105.3	118.0	0.371
320	0.001 865	131.2	142.0	0.454	0.001 864	130.9	142.1	0.454	0.001 855	129.6	142.6	0.449
330	0.001 911	156.2	167.3	0.532	0.001 909	155.9	167.4	0.532	0.001 899	154.5	167.8	0.527
340	0.001961	182.0	193.4	0.610	0.001958	181.7	193.4	0.609	0.001 946	180.0	193.6	0.604
350	0.002.017	208.5	220.2	0.688	0.002014	208.1	220.2	0.687	0.001999	206.2	220.2	0.681
370	0.002.000	263.9	247.8	0.700	0.002.070	255.5	247.7	0.704	0.002.038	255.1	247.5	0.738
380	0.002 237	293.0	306.0	0.923	0.002 230	292.3	305.7	0.921	0.002 200	289.3	304.7	0.913
390	0.002 340	323.3	336.9	1.003	0.002 330	322.5	336.5	1.001	0.002 288	318.8	334.8	0.991
400	0.002469	355.2	369.5	1.086	0.002455	354.1	368.8	1.083	0.002 395	349.3	366.1	1.070
410 420	0.002.643	389.1	404.4	1.172	0.002620	387.6	403.3	1.168	0.002527	381.2	398.9	1.151
430	0.002 904	420.2 468 8	443.0	1.200	0.002858	423.8 464 5	441.U 484 A	1.239	0.002699	414.8 450 5	433./ 471 1	1.235
440	0.004 201	517.4	541.7	1.494	0.003 942	510.7	534.3	1.476	0.002 934	488.9	511.1	1.323
450	0.005 227	562.2	592.6	1.609	0.004 867	555.7	584.9	1.589	0.003 761	529.3	555.7	1.515
460	0.006 129	599.7	635.2	1.702	0.005 743	594.4	628.9	1.686	0.004 367	569.3	599.9	1.612
470	0.006 891	632.7	672.7	1.783	0.006 499	628.4	667.4	1.769	0.004 998	606.6	641.6	1.702
480 490	0.007555	663.4 602 0	707.2	1.856	0.007 159	659.7	702.7	1.843	0.005 595	640.9	680.1	1.783
500	0.008 696	721.5	7719	1.988	0.007/30	7186	768.4	1.912	0.000 143	073.2 704 0	750.6	1.05/
510	0.009 205	749.8	803.1	2.050	0.008 793	747.2	799.9	2.040	0.007 121	734.0	783.9	1.993
520	0.009 685	777.9	834.0	2.110	0.009 267	775.5	831.1	2.100	0.007 561	763.5	816.4	2.056
530	0.010 14	805.9	864.7	2.168	0.009 716	803.7	862.0	2.159	0.007 977	792.6	848.4	2.117

	3 /4			<i>S</i> , kJ/	3.4	FT 1-T/1-	FF 1-T/1	S, kJ/	3 //	FT 1-T/1	77 1-7/1	S, kJ/
T, K	v, m°/kg	U, kJ/kg	H, kJ/kg	(kg K.)	$v, m^{\circ}/kg$	U, kJ/kg	H, KJ/Kg	(kg K.)	U, m ³ /Kg	U, kJ/kg	H, KJ/Kg	(kg K.)
540	0.01058	834.0	895.3	2.225	0.01015	831.9	892.8	2.217	0.008 374	821.6	880.2	2.176
550	0.01100	862.1	926.0	2.281	0.010 56	860.2	923.6	2.273	0.008 754	850.5	911.8	2.234
570	0.01141	918.9	987.4	2.391	0.01135	917.2	985.3	2.323	0.009 474	908.5	974.8	2.291
580	0.012 20	947.6	1018.3	2.445	0.01173	945.9	1016.3	2.437	0.009 818	937.7	1006.4	2.402
590	0.012 57	976.4	1049.4	2.498	0.012 10	974.9	1047.5	2.491	0.010 15	967.0	1038.0	2.456
600	0.012 94	1005.5	1080.6	2.550	0.01246	1004.0	1078.8	2.543	0.01048	996.5	1069.8	2.509
		Pressure =	8.0 MPa			Pressure =	9.0 MPa		P	ressure = 1	0.0 MPa	
250	0.001 624	-30.5	-17.5	-0.120	0.001621	-31.1	-16.6	-0.122	0.001618	-31.7	-15.6	-0.125
260	0.001650	-9.1	+4.1	-0.035	0.001 647	9.8	5.0	-0.037	0.001 644	-10.4	6.0	-0.040
270	0.0016/8	12.7	26.1	0.048	0.001675	24.1	27.0	0.045	0.0016/1	11.2	27.9	0.043
290	0.001 739	57.5	71.4	0.130	0.001 735	56.6	72.2	0.207	0.001730	55.7	73.0	0.204
300	0.001 773	80.6	94.8	0.289	0.001 767	79.6	95.5	0.286	0.001 762	78.6	96.3	0.282
310	0.001 809	104.2	118.7	0.368	0.001 803	103.1	119.3	0.364	0.001 796	102.0	120.0	0.360
320	0.001 848	128.3	143.1	0.445	0.001 840	127.1	143.7	0.441	0.001 833	126.0	144.3	0.437
330	0.001 890	153.1	108.2	0.522	0.001 881	151.7	108.7	0.518	0.0018/3	150.4	109.2	0.514
350	0.001 935	204.4	220.3	0.676	0.001 973	202.7	220.5	0.670	0.001 962	201.1	220.7	0.666
360	0.002 041	231.0	247.4	0.752	0.002 026	229.1	247.3	0.746	0.002012	227.3	247.4	0.741
370	0.002 103	258.4	275.2	0.828	0.002 084	256.2	275.0	0.822	0.002 068	254.1	274.8	0.816
380	0.002 173	286.5	303.9	0.905	0.002 150	284.0	303.3	0.897	0.002 129	281.6	302.9	0.891
390 400	0.002 234	315.4	353.5	1.059	0.002.224	312.5	352.5	0.973	0.002 198	309.8	331.8 361.4	0.966
410	0.002 460	376.2	395.9	1.138	0.002 407	371.9	393.6	1.126	0.002 364	368.2	391.9	1.116
420	0.002 598	408.3	429.0	1.217	0.002 524	403.0	425.7	1.203	0.002466	398.6	423.3	1.192
430	0.002771	441.7	463.9	1.299	0.002 664	435.1	459.1	1.282	0.002 585	429.8	455.7	1.268
440	0.002 998	476.7	500.7	1.384	0.002 837	468.3	493.9	1.362	0.002727	461.9	489.1	1.345
450	0.003 296	513.2	580.0	1.4/1	0.003 051	502.6	567.5	1.443	0.002895	494.7 528.3	523.7	1.422
470	0.004 120	587.6	620.5	1.647	0.003 627	573.1	605.7	1.608	0.003 330	562.3	595.6	1.579
480	0.004 593	623.1	659.8	1.730	0.003 979	608.2	644.0	1.688	0.003 596	596.4	632.4	1.656
490	0.005 062	656.9	697.4	1.808	0.004 352	642.4	681.6	1.766	0.003 888	630.3	669.1	1.732
500	0.005 511	689.4	733.4	1.880	0.004 729	675.6	718.2	1.840	0.004 195	663.6	705.5	1.805
510	0.005 937	720.7	202.0	1.949	0.005 099	707.9	788 5	1.910	0.004 507	696.2	741.3	1.876
530	0.006 723	781.3	835.1	2.013	0.005 803	770.2	822.5	2.042	0.005 123	720.2	810.9	2.010
540	0.007 087	811.1	867.8	2.139	0.006 135	800.7	856.0	2.105	0.005 421	790.8	845.0	2.074
550	0.007 437	840.7	900.2	2.199	0.006 454	831.0	889.1	2.166	0.005 710	821.6	878.7	2.136
560	0.007 773	870.2	932.4	2.257	0.006 763	861.1	921.9	2.225	0.005 991	852.2	912.1	2.196
570	0.008 098	899.8	964.5	2.313	0.007 061	891.1	954.6	2.283	0.006 264	882.6	945.3	2.255
590	0.008718	929.4	1028.8	2.309	0.007 631	921.1	1019 9	2.340	0.006 329	913.1	9/8.4	2.312
600	0.009017	988.9	1061.0	2.478	0.007 905	981.4	1012.5	2.355	0.007 039	974.0	1011.4	2.309
	p	TASSUTA -	15 A MPa		1	Pressure -	20 0 MPa		T		25.0 MPa	
250	0.001 605	-34.6	-10.6	-0.137	0.001 593	-37.3	-5.5	-0.149	0.001 583	-39.9	-0.3	-0.160
260	0.001 629	-13.6	10.9	-0.053	0.001616	-16.5	15.8	-0.065	0.001 605	-19.2	20.9	-0.076
270	0.001655	7.8	32.6	0.029	0.001640	4.7	37.5	0.017	0.001 627	1.7	42.4	0.005
280	0.001681	29.5	54.7	0.110	0.001665	26.1	59.4	0.097	0.001651	23.0	64.3	0.084
290	0.001 709	51.7 74.2	100.3	0.189	0.001 691	48.0	01.0 104.6	0.175	0.001 675	44.0 66.6	00.3 109.1	0.162
310	0.001 769	97.2	123.7	0.344	0.001747	92.9	127.8	0.328	0.001727	89.0	132.2	0.314
320	0.001 802	120.6	147.7	0.420	0.001 776	116.0	151.5	0.404	0.001 754	111.8	155.6	0.389
330	0.001 837	144.6	172.1	0.495	0.001 808	139.5	175.7	0.428	0.001 783	135.0	179.6	0.463
340	0.001 874	169.0	197.1	0.569	0.001 840	163.5	200.3	0.552	0.001 813	158.7	204.0	0.536
360	0.001 913	219.4	248.7	0.043	0.001 873	212.9	223.3	0.623	0.001 844	207.3	226.9	0.608
370	0.002 000	245.4	275.4	0.790	0.001 950	238.3	277.3	0.768	0.001910	232.3	280.1	0.750
380	0.002 048	271.8	302.6	0.862	0.001 991	264.1	303.9	0.840	0.001 946	257.7	306.4	0.820
390	0.002 101	298.8	330.3	0.935	0.002 034	290.4	331.1	0.910	0.001 983	283.5	333.1	0.889
400 410	0.002157	326.3	358.6	1.006	0.002.080	317.1	358.7 386 9	0.980	0.002.023	309.7	360.3	0.958
420	0.002.219	382.7	417.0	1.149	0.002 129	371.8	415.4	1.118	0.002 004	363 3	416.0	1.027
430	0.002 358	411.7	447.1	1.219	0.002 235	399.8	444.5	1.187	0.002 152	390.7	444.5	1.161
440	0.002 438	441.1	477.7	1.290	0.002 294	428.1	474.0	1.254	0.002 199	418.4	473.4	1.228
450	0.002525	471.0	508.8	1.360	0.002356	456.8	503.9	1.322	0.002 248	446.5	502.7	1.293
400	0.002621	501.2	540.5 572 7	1.429	0.002422	485.9	554.5 565 1	1.389	0.002.300	4/4.8	552.3 562 A	1.339
480	0.002 839	562.8	605.4	1.567	0.002 492	544.9	596.3	1.520	0.002 334	532.5	592.4	1.487
490	0.002 962	594.0	638.5	1.636	0.002 645	574.9	627.8	1.585	0.002 470	561.8	623.5	1.551
500	0.003 094	625.4	671.8	1.703	0.002 728	605.1	659.7	1.650	0.002531	591.3	654.6	1.613
510	0.003 235	657.0	705.5	1.770	0.002815	635.5	691.8	1.713	0.002 595	621.1	686.0	1.676
530	0.003 585	720.2	773.3	1.000	0.002 906	697.0	757.0	1.839	0.002 730	681.5	749.7	1.798
540	0.003 696	751.8	807.3	1.964	0.003 099	728.0	790.0	1.900	0.002 800	712.0	782.0	1.858

				S, kJ/				S, kJ/				S, kJ/
<i>T</i> , K	υ, m³/kg	U, kJ/kg	H, kJ/kg	(kg K)	v, m³/kg	U, kJ/kg	H, kJ/kg	(kg K)	v, m³/kg	U, kJ/kg	H, kJ/kg	(kg K)
550	0.003 859	783.4	841.3	2.026	0.003 200	759.2	823.2	1.961	0.002 873	742.7	814.5	1.918
560	0.004 024	815.0	875.3	2.087	0.003 304	790.4	856.5	2.021	0.002 947	773.6	847.2	1.977
570	0.004 190	846.5	909.4	2.148	0.003411	821.9	890.1	2.081	0.003 023	804.7	880.2	2.036
580	0.004 356	878.1	943.4	2.207	0.003 519	853.4	923.8	2.139	0.003 101	835.9	913.5	2.093
590	0.004 522	909.6	977.4	2.265	0.003 629	885.0	957.6	2.197	0.003 180	867.4	946.9	2.150
600	0.004 687	941.2	1011.5	2.322	0.003 740	916.8	991.6	2.254	0.003 261	899.0	980.5	2.207
	Р	ressure = 3	30.0 MPa		F	ressure = (35.0 MPa		F	ressure = 4	0.0 MPa	
250	0.001573	-42.2	5.0	-0.170	0.001565	-44.5	10.3	-0.180	0.001556	-46.6	15.7	-0.190
26 0	0.001 594	-21.7	26.1	0.087	0.001 585	-24.1	31.3	-0.098	0.001 576	-26.4	36.7	-0.108
270	0.001616	-1.0	47.5	-0.006	0.001605	-3.5	52.7	-0.017	0.001 595	-5.9	57.9	-0.027
280	0.001638	20.1	69.3	0.073	0.001626	17.4	74.3	0.062	0.001615	14.9	79.5	0.051
290	0.001661	41.5	91.4	0.150	0.001648	38.7	96.3	0.139	0.001636	36.0	101.4	0.128
300	0.001685	63.3	113.8	0.226	0.001670	60.2	118.7	0.215	0.001657	57.4	123.7	0.204
310	0.001 709	85.5	136.7	0.301	0.001 694	82.2	141.5	0.289	0.001 679	79.2	146.4	0.278
320	0.001 735	108.0	160.1	0.376	0.001 717	104.6	164.7	0.363	0.001 702	101.4	169.5	0.351
330	0.001 761	131.0	183.8	0.449	0.001742	127.3	188.3	0.436	0.001 725	124.0	193.0	0.424
340	0.001 789	154.4	208.1	0.521	0.001768	150.5	212.4	0.508	0.001 749	147.0	216.9	0.495
350	0.001817	178.2	232.7	0.593	0.001 794	174.1	236.9	0.579	0.001773	170.4	241.3	0.566
360	0.001 847	202.5	257.9	0.663	0.001821	198.1	261.8	0.649	0.001 798	194.2	266.1	0.636
370	0.001 877	227.1	283.4	0.733	0.001 849	222.5	287.2	0.718	0.001 824	218.4	291.3	0.705
380	0.001 909	252.2	309.5	0.803	0.001 878	247.3	313.0	0.787	0.001851	243.0	317.0	0.773
390	0.001 942	277.6	335.9	0.871	0.001 908	272.5	339.3	0.855	0.001878	267.9	343.1	0.841
400	0.001 977	303.5	362.8	0.940	0.001939	298.1	365.9	0.923	0.001 907	293.3	369.6	0.908
410	0.002 013	329.7	390.1	1.007	0.001971	324.0	393.0	0.990	0.001 936	319.0	396.4	0.974
420	0.002 050	356.3	417.8	1.074	0.002 004	350.3	420.5	1.056	0.001 965	345.1	423.7	1.040
430	0.002 089	383.3	445.9	1.140	0.002038	377.0	448.3	1.121	0.001 996	371.5	451.4	1.105
440	0.002 129	410.6	474.4	1.205	0.002 073	404.0	476.5	1.186	0.002027	398.3	479.4	1.170
450	0.002 170	438.2	503.3	1.270	0.002 109	431.3	505.1	1.251	0.002 060	425.4	507.8	1.233
460	0.002214	466.1	532.5	1.335	0.002 147	458.9	534.1	1.314	0.002 093	452.8	536.5	1.296
470	0.002 258	494.4	562.1	1.398	0.002 185	486.9	563.4	1.377	0.002 126	480.5	565.6	1.359
480	0.002 305	523.0	592.1	1.461	0.002 225	515.1	593.0	1.440	0.002161	508.5	595.0	1.421
490	0.002 352	551.8	622.4	1.524	0.002 265	543.7	623.0	1.501	0.002 197	536.9	624.7	1.482
500	0.002 402	580.9	653.0	1.586	0.002 307	572.5	653.3	1.563	0.002 233	565.5	654.8	1.543
510	0.002 453	610.3	683.9	1.647	0.002 350	601.6	683.9	1.623	0.002 270	594.4	685.2	1.603
520	0.002 505	640.0	715.1	1.707	0.002 393	631.0	714.8	1.683	0.002 308	623.5	715.8	1.663
530	0.002559	669.9	746.6	1.767	0.002 438	660.6	746.0	1.743	0.002 346	653.0	746.8	1.722
540	0.002614	700.0	778.4	1.827	0.002484	690.5	777.4	1.801	0.002 385	682.6	778.1	1.780
550	0.002 671	730.4	810.5	1.886	0.002 531	720.6	809.2	1.860	0.002 425	712.6	809.6	1.838
560	0.002 729	761.0	842.8	1.944	0.002 578	751.0	841.3	1.917	0.002 466	742.6	841.4	1.895
570	0.002788	791.8	875.4	2.002	0.002627	781.6	873.6	1.975	0.002 507	773.3	873.5	1.952
580	0.002 849	822.8	908.3	2.059	0.002 676	812.5	906.1	2.031	0.002 549	804.0	905.9	2.008
590	0.002 910	854.1	941.4	2.115	0.002 727	843.5	939.0	2.087	0.002 592	834.9	938.5	2.064
600	0.002 973	885.5	974.7	2.171	0.002777	874.8	972.1	2.143	0.002 635	866.1	971.4	2.120

^a The symbol v denotes the specific volume, U the internal energy, H the enthalpy, and S the entropy. ^b The reference states for the derived enthalpy and entropy properties from the surface are adjusted to be those of the liquid at the normal boiling temperature defined by the surface (T = 261.395 K for P = 0.101325 MPa). ^c Use with caution in the critical region.

quality of the data. For the precise liquid densities of Haynes (12), the average density deviation is 0.12% for temperatures from 250 to 300 K. For the data of Sage (13) and of Morris (14), which are self-consistent to 0.3% along isotherms, the deviations are within 0.6% for temperatures from 310 to 394 K. The data of the gas phase for $T < T_c$, with the exception of the saturated vapor pressures and two isotherms measured by Waxman et al. (this paper), are not sufficiently accurate to merit a comparison. The saturated vapor pressures defined by the surface agree with our measurements to within 0.0006 MPa for 245 $\leq T \leq$ 373 K and 0.0026 MPa for 373 $< T \leq$ 398 K.

We modeled the function for the Helmholtz energy of isobutane after that used successfully in a recent correlation of the thermodynamic properties of water by Haar, Gallagher, and Kell (15). Unknown quantities were evaluated according to the least-squares criterion or, if highly nonlinear, to other less exact criteria. The data used in the evaluation consisted of $P-\rho-T$ data selected from literature sources and our recent measurements. The model was not constrained to fit the actual critical point and a small surrounding region; instead this critical region was allowed to float (unconstrained) in the development of the surface so that the critical anomalies would not distort the analytic surface. Further, the Gibbs energies of the coexisting phases expressed in terms of the Heimholtz function and the product of the saturation pressure and specific volume for each phase were constrained to conform with selected saturation data (16, 17) and to be approximately equal. The critical region of isobutane will be treated separately in a forthcoming report.

In Tables I and II, we have tabulated thermodynamic properties generated from our analytical representation of the Helmoltz energy for isobutane. In Table I, saturated thermodynamic properties of isobutane are given: specific volume (v), internal energy (U), enthalpy (H), and entropy (S), with either temperature or pressure as the parameter. In Table II, similar properties are given along isobars with the temperature as the parameter; a solid line is used to separate the properties of the liquid phase and the gas phase. The intervals between isobars correspond to slowly varying first differences in the specific volume and enthalpy. Within the computer program, the properties are calculated first relative to the reference state of 0 K and then adjusted relative to another reference state within our range of temperatures, liquid at its normal boiling point.

In the Appendix, we have outlined the development of a Helmholtz energy function for defining the thermodynamic properties of isobutane. Further we present our saturated va-

Table III.	Consta	ants ^a						
	P*			ρ*				Γ*
MPa bar psi	1 10 145.03	kg/m mol/ 10/ft	n ³ dm ³ 3	1 1.72 6.24	2045×10^{-10}	2	K K °F	1 1 1.8
		R			M(isot	outan	ie)	
kJ/(k J/(m BTU	cg K) ol K) /(lb°F)	0.143 8.314 0.034	0452 40 1658	g 11	/mol ø/mol	58.1 0.12	243	22
P	• <u> </u>	ρ _c			T _c		t	c
MPa 3 bar 3 psi 5	.6306 6.306 26.57	kg/m ³ mol/dm ³ lb/ft ³	227.0 3.905 14.17	K K	407.851 407.851	°F	27	4.462

^a Critical point is designated by the subscript c; values were evaluated by Levelt Sengers (26 (from ref 27)).

Table IV. Units and Conversion Factors

uni	s pr	ess.	density	temp	energy
SI "chemic	MP	a	kg/m ³	K	kJ/kg
"enginee	ering" psi((abs)	lb/ft ³	°F	BTU/lb
		press	. conversion f	actors	
	MPa		bar		psi
1 MPa 1 bar	0.1		10		145.0377 14.50377
1 psi 1 atm	6.894757 × 3 0.101325	10-3	6.894757 × 1.01325	10-2	14.69595
		dens	ity conversior	factors	
	kg/m³		mol/dm³]	lb/ft ³
kg/m³ mol/dm³ lb/ft³	58.1243 16.0185	1.7 0.2	2045 × 10 ⁻² 75590	6.242 3.628	280 × 10 ⁻² 358
		energ	gy conversion	factors	
	kJ/kg	5	J/mol	В	TU/lb
kJ/kg J/mol BTU/lb	1.72045 × 2.32600	10-2	58.1243 135.197	0.429923 7.39661 × 10⁻	

por pressure measurements and Burnett $P-\rho-T$ results for the gas phase and compare them with literature data and values derived from the surface. We also compare enthalpies of vaporization and isobaric heat capacities for the saturated liquid and the vapor phase as derived from the surface with experimental data from the literature. Finally, we compare caloric and speed of sound properties predicted by the recent isochoric (nonanalytic) correlation of Goodwin and Haynes (9) for isobutane with corresponding results of this correlation. Both correlations use the same data base.

Acknowledgment

We gratefully acknowledge the contributions of H. Davis to the experimental program and of M. Klein, L. Haar, and J. M. H. Levelt Sengers to the correlation. Professor J. Kestin provided valuable comments and suggestions for the program. We also thank W. Haynes for permission to use his results prior to publication and J. Filliben and S. Leigh for their computational suggestions.

Appendix

Preface. To facilitate the reader's use of the equations involved in our representation of a thermodynamic surface for

Table V. Coefficients (N_i) and Constant (N_g) of Eq 2 for Ideal-Gas Heat Capacity

i	Ni	N ₉	
1	0.113 634 × 10 ⁸		
2	-0.460 434 × 10 ⁶		
3	0.622 522 × 10 ⁴		
4	$-0.298782 imes10^{2}$		
5	0.142485		
6	-0.661030×10^{-4}		
7	-0.115812×10^{-7}		
8	-0.208957×10^{2}		
9		0.3250×10^{4}	

Table VI. Coefficients (B_i) of Eq 5 for Second Virial Coefficient

				_
i	10 ³ B _i	i	10 ³ <i>B</i> _i	
0	3.67237	5	0.163 192	
1	-7.52673	10	-0.110120×10^{-3}	
3	-1.78220			

Table VII. Coefficients (b_i) of Eq 6 for Excluded Volume

i -	$10^{3}b_{i}$	i	$10^{3}b_{i}$	
0	2.729 62	4	-4.46930×10^{-3}	
L	0.694 809	8	1.75219 × 10⁻⁵	

Table VIII. Coefficients (C_{nj}) and Constant (a) of Eq 7 for Residual Helmholtz Energy^a

n, j	C _{nj}	n, j	C _{nj}
1, 1	-5.324 61 × 10 ⁻⁴	2, 3	-4.15421×10^{-3}
2, 1	2.32047×10^{-3}	4, 3	3.205 63 × 10 ⁻²
4,1	-1.74015×10^{-2}	6, 3	-7.381 11 × 10⁻²
5, 1	9.03851 × 10 ⁻²	8,3	6.509 46 × 10 ⁻²
6, 1	-9.293 26 × 10 ⁻²	1,4	$-1.270 \ 11 \times 10^{-3}$
8, 1	3.52214×10^{-2}	6,4	-2.81116×10^{-3}
1, 2	-6.851 69 × 10 ⁻⁴	1, 5	-5.63115×10^{-4}
3, 2	-3.84671×10^{-3}	2, 5	$2.504.05 \times 10^{-3}$
5,2	-9.564 14 × 10 ⁻²	5, 5	-5.57420×10^{-3}
6, 2	1.03133×10^{-1}	8, 5	6.35584×10^{-3}
7, 2	9.193 27 × 10 ⁻²	2,6	-4.439 70 × 10 ⁻⁵
8, 2	$-1.055\ 60 imes 10^{-1}$	8,6	9.274 66 × 10 ⁻⁶
1, 3	3.21859×10^{-3}		

^a C_{nj} values not listed are equal to zero; the constant $a = 1.72045 \times 10^{-3}$. The value of the term ap_c for isobutane was assumed to be the same as for water. This resulted in a reasonable value for the constant.

isobutane, we have expressed the equations in a dimensionless form. Some of the equations are inherently dimensionless; i.e., the variables are expressed as reduced quantities. The others are based on quantities initially defined in the SI unit system and then transformed into dimensionless quantities. For example, the reduced temperature variable is expressed as $T = T/T^*$ where T^* is the equivalent of 1 K for the unit system used. Similarly other quantities are expressed relative to either unit equivalents or their inverse values. Transformed quantities are designated by boldface italicized letters and unit equivalents by the asterisk. The boldface italicized equivalent of the density (ρ) is denoted by the symbol (ρ) . For different unit systems, values of unit equivalents, gas constant (R), isobutane molecular weight (M), and isobutane critical-point constants are listed in Table III. Conversion factors to facilitate the conversion of quantities expressed in one unit system to another are listed in Table IV.

Heimholtz Energy Function. The thermodynamic surface of isobutane is expressed in the form of the Heimholtz energy as a function of temperature and density. This particular function has been adapted from a model developed by Haar, Gallagher, and Kell to represent the thermodynamic surface of water (15)

$$A(T,\rho) = A^{0}(T,\rho_{0}) + A_{base}(T,\rho) + A_{res}(T,\rho)$$
(1)

The Helmholtz function, $A(T,\rho)$, represents the sum of three contributions. The first is of the ideal gas $A^{0}(T,\rho_{0})$ for a reference density (ρ_0) corresponding to a pressure of 0.101325 MPa and the reference condition $A^{0}(0 \text{ K}, \rho_{0}) = 0$. The second is of a physically based expression $A_{\text{base}}(\mathcal{T},\rho)$ incorporating the effects of molecular repulsion and attraction (15). The remaining contribution is of a sum of residual terms $A_{res}(T,\rho)$. The residual terms are selected and evaluated from a leastsquares analysis of the objective functions P(exptl) - $\rho^{2}[\partial A(T,\rho)/\partial \rho]$ and an approximation of the Gibbs equality for the coexisting phases (18, 19). Statistical weights are assigned to the experimental data in accordance with our estimate of their precision and accuracy (3). Further, we define the reference states for the enthalpy and entropy to be those of the liquid at the normal boiling temperature defined by the surface (T = 261.395 K for P = 0.101325 MPa).

The evaluation of $A^{0}(T,\rho_{0})$ is based on an analytic representation of the ideal-gas values for the isobaric heat capacity C_{ρ}^{0} calculated by Chen et al. (20) for temperatures from 0 to 1500 K. The function is of the form initially suggested by Barieau (21) for nitrogen

$$C_{\rho}^{0}/R = \sum_{i=1}^{7} N_{i}T^{i-4} + N_{8}u^{2}e^{u}/(e^{u} - 1)^{2}$$
(2)

where $\boldsymbol{u} = \boldsymbol{N}_{g}/\boldsymbol{T}$. In terms of eq 2 and appropriate thermodynamic relations, the ideal-gas contribution becomes

$$\frac{A^{0}(T,\rho_{0})}{RT} = \sum_{i=1,\neq3}^{7} \frac{N_{i}T^{i-4}}{i-3} - \sum_{i=1,\neq4}^{7} \frac{N_{i}T^{i-4}}{i-4} + (N_{3}T^{-1} - N_{4} + 1) \text{ in } (T) + N_{8}[\ln(e^{u} - 1) - u] - 1 (3)$$

for which constants of integration are defined as zero. Values of the dimensionless coefficients (N_1 , ..., N_8) and of the dimensionless constant (N_9) are listed in Table V. Herein, coefficients and constants refer to quantities evaluated according to the least-squares criterion and to less exact criteria, respectively. The percentage deviations of values calculated with eq 2 as compared to Chen's values are within $\pm 0.1\%$ for temperatures from 250 to 1500 K and $\pm 0.4\%$ for lower temperatures (3).

For isobutane, an approximately spherical molecule, the specific model chosen for the physically based function $A_{\text{base}}(T,\rho)$ is

$$A_{\text{base}}(T,\rho)/RT = -\ln(1-y) + 1.5(1-y)^{-2} + 4y(B/b-1) - 1.5 + \ln(\rho/\rho_0)$$
(4)

where **B** and **b** are the dimensionless equivalents of the second virial (B) and excluded volume (b), both temperature dependent, and y is defined as y = pb/4 (3 (from ref 15)). The function $A_{\text{base}}(T,\rho)$ is most effective in the highly compressed liquid region and in the gas-phase region for densities sufficiently small to only require the second virial for the characterization of its nonideality. For many substances, the second virials calculated with the use of the generalized model, not given herein, compare favorably to literature experimental values (22). From eq 4, the quantities B and b were evaluated simultaneously for each isotherm T from $P - \rho - T$ data with a density greater than 1.8 times the critical density. This included mainly liquid-phase data for temperatures from 120 to 394 K. Selected terms of a power series in the ratio of the critical temperature to the temperature were fitted to these B values and calculated values from $P - \rho - T$ data (ref 11 and 23 and this work). The second virial function expressed in terms of dimensionless quantities is given by

$$\boldsymbol{B} = \boldsymbol{B}\rho^* = \boldsymbol{B}_0 + \boldsymbol{B}_1(T_c/T) + \boldsymbol{B}_3(T_c/T)^3 + \boldsymbol{B}_5(T_c/T)^5 + \boldsymbol{B}_{10}(T_c/T)^{10}$$
(5)

The subscript c is used to designate critical-point properties. In the evaluation of the series unknowns, B_i , the statistical weights assigned to the gas-phase values were sufficiently large to limit the corresponding residuals to a maximum of 34×10^{-5} m³/kg; the residual average for the data at lower temperatures was a factor of 10 larger. Similarly, the excluded volume quantity is represented in dimensionless form by a finite power series in T_c/T plus a limiting temperature term, In (T_c/T)

$$\boldsymbol{b} = \boldsymbol{b} \rho^* = \boldsymbol{b}_0 + \boldsymbol{b}_{\perp} \ln (T_c/T) + \boldsymbol{b}_4 (T_c/T)^4 + \boldsymbol{b}_8 (T_c/T)^8$$
(6)

Values of the two sets of dimensionless coefficients, B_i and b_j , are listed in Tables VI and VII, respectively.

The evaluation of the coefficients, B_i and b_j , is optimized with respect to the $P-\rho-T$ data; however, caloric properties calculated from eq 4 exhibit an increasing anamolous behavior for decreasing temperatures below 180 K. This is a consequence of the behavior of the pressure derivatives, dP/dT and $dP/d\rho$, calculated from eq 4 for corresponding decreasing temperatures. For increasing temperatures above 180 K, the derivative behavior is nearly monotonic. Since isobutane geothermal processes do not involve these lower temperatures, we have limited the applicable temperature range of the correlation to higher temperatures, 250–600 K.

The remaining contribution $A_{res}(T,\rho)$ consists of a sum of residual terms that compensate for the difference between the pressure defined by $A_{base}(T,\rho)$ and the experimental pressure. The residual function in dimensionless form is expressed as

$$\frac{A_{\text{res}}(T,\rho)}{P^{\bullet}/\rho^{\bullet}} = \sum_{n,j} \boldsymbol{C}_{nj} \left(\frac{T_c}{T} \right) \frac{(1 - e^{-\boldsymbol{a} \cdot \boldsymbol{\rho}})^{n+1}}{\boldsymbol{a}(n+1)}$$
(7)

for which the values of the dimensionless coefficients (C_{η}) and constant (*a*) are listed in Table VIII. The term $1 - e^{-a\rho}$ yields finite limits for zero and infinite density values. The function, which was developed for the thermodynamic correlation of water, is most effective for $T > T_c$. In the liquid phase, the contributions of the function are greater than required for the correlation of isobutane since the term $(T_c/T)^{\prime}$ increases with decreasing temperature. For temperatures from 250 to 600 K, the terms are selected and the corresponding coefficients evaluated according to the least-squares optimization of two objective functions. One concerns the residual error in the pressure and the other an approximation of the Gibbs equality for the coexisting phases.

Saturated Vapor and Gas-Phase Measurements (This Work). We determined saturated vapor pressures and representative isotherms above and below the critical temperature in an effort to assess the reliability of literature data sources. We obtained our data with an existing Burnett apparatus (24) designed to yield high-quality $P-\rho-T$ data for temperatures from 253 to 500 K and pressures from 0.2 to 30 MPa. The precision and the accuracy of the associated pressure measurements have been 5 and 20 ppm, respectively. However, this type of measurement is not obtained readily. For this program, we measured the pressures with more conveniently operated instrumentation. The precision and the accuracy of the pressure measurements for this work were 0.01% for pressures greater than 0.5 MPa. Both degraded proportionately with decreasing pressure below 0.5 MPa to 0.05% at the lower limit of 0.2 MPa. The temperatures were measured on the IPTS-68 with a capsule platinum resistance thermometer, which had a stability of 0.002 K at the triple point of water. We used a commercial research grade of isobutane for the measurements; its purity was reported to be 99.98%.

Saturated Vapor Pressure. Saturated vapor pressures were measured near the vapor side of the coexistence boundary. For several temperatures, we varied the ratio of the quantity of vapor to liquid and measured the pressure for the corre-

Table IX. Coefficients (E_i) of Eq 9 and Coefficients $(A_j \text{ and } A^-)$ and Constant (θ) of Eq 10^a

eq 9		eq 10			
i	Ei	j	Aj	A^-	
1	-6.837 96	1	6.818 526		
2	1.252 20	2	-10.73853		
5	-2.340 60	3	6.8431		
				22.018 24	

^a Saturated vapor pressure. Equation 9 is applicable for $245 \le T \le T_c$ and eq 10 for $298 \le T \le T_c$. Equation 10 is based on the scaling laws for the critical region (26 (from ref 27)); the constant $\theta = 0.11$. θ is a critical-region exponent characterizing the divergence of $d^2P(vapor)/dT^2$; it is a universal constant (28).

Table X. Vapor Pressure Data of Isobutane Sample from This Work a

temp, K	press., MPa	temp, K	press., MPa
 298.15	0.3500	333.15	0.8676
303.15	0.4043	343.15	1.0867
308.15	0.4641	353.15	1.3432
313.15	0.5304	363.15	1.6408
318.15	0.6032	373.15	1.9855
323.15	0.6836	383.15	2.3819
328.15	0.7725	393.15	2.8361
333.15	0.8683	398.15	3.0879

 a Sample purity, commercial research grade, is reported to be 99.98%.

Table XI. Density Virial Coefficients for Selected Temperatures from This Work^a

<i>T</i> , K	10 5B , m³/kg	10° <i>C</i> , (m³/kg)²	10°D, (m³/kg)³	10 ¹¹ C, (m ³ /kg) ⁴	ρ _{max} kg/m³
377.594	-647.4 ± 0.7	9.86 ± 0.16			41
394.261	-592.2 ± 0.2	10.66 ± 0.08			81
423.15	-501.5 ± 0.3	8.91 ± 0.07	7.9 ± 0.8	-3.0 ± 0.3	150
448.15	-440.3 ± 0.1	8.62 ± 0.01			100

^a \mathcal{B} , second virial; $\boldsymbol{\ell}$, third virial; $\boldsymbol{\lambda}$, fourth virial; $\boldsymbol{\ell}$, fifth virial. Virial coefficients correspond to the coefficients of a finite density series representation of the compressibility factor.

Table XII.	Isothermal $P-\rho-T$	Data a	t 423.15	and
448.15 from	n This Work			

press., MPa	density, kg/m ³	press., MPa	density, kg/m³	
<u> </u>	T=4	23.15 K		
20,750	457.9	3.747	110.2	
4.754	257.2	5.403	314.1	
10.840	406.9	4.352	176.4	
4.600	228.5	3.571	99.91	
3.977	128.3	15.982	438.4	
6.426	349.3	4.690	246.2	
4.452	196.2	4.078	138.3	
	T = 4	48.15 K		
10.024	349.6	6.757	261.2	
5.770	196.3	5.060	146.7	
4.377	110.3	3.675	82.39	
3.018	61.97	7.480	292.5	
10.024	349.6	5.328	164.2	
5.770	196.4	3.946	92.24	
4.377	110.3			

sponding ratios. In general, for different ratios, the vapor pressure did not vary by more than 100 Pa. However, at 298 K, the variation increased to 300 Pa for a change of liquid volume from 1 to 5 cm³ as measured with a volumetric pump. We have represented our data and selected literature data for $245 \le T \le 398$ K with appropriate terms of a general power series in $(1 - T/T_c)^{(1+1)/2}$. The generalized form, proposed by Wagner (25), is expressed as

Figure 2. Comparison of saturated vapor pressures, $\Delta_{sat.} = P_{sat.}(expti) - P_{sat.}(eq 9)$; (\times) this work; (+) Aston (28); (O) Beattie (27); (Δ) Connolly (23); (\bullet) Dana (29); (\Box) Sage (13).

Figure 3. Comparison of compressibility factors $(Z = P\rho/RT)$: $\Delta Z = Z(\text{lit.}) - Z(\text{this work}).$

$$\ln (P/P_{\rm c}) = (T_{\rm c}/T) \sum_{j=1}^{J} E_j (1 - T/T_{\rm c})^{(1+j)/2}$$
(8)

We chose the specific form to be

$$\ln (P/P_c) = (T_c/T)[E_1(1 - T/T_c) + E_2(1 - T/T_c)^{3/2} + E_5(1 - T/T_c)^3]$$
(9)

for the temperature range 245 K \leq T \leq T $_{\rm c}.$ We also have as an option the equation

$$P/P_{c} = 1 + A_{1}(1 - T/T_{c}) + A^{-}(1 - T/T_{c})^{2-\theta} + A_{2}(1 - T/T_{c})^{2} + A_{3}(1 - T/T_{c})^{3} (10)$$

which is based on the scaling laws (26 (from ref 27)) and is applicable for the temperature range of 298 $K \le T \le T_c$. Values of the two sets of dimensionless coefficients (E_i) and (A_j) and of the constant θ are listed in Table IX. Our measurements of the saturated vapor pressure are summarized in Table X; details are discussed in ref 26. Corresponding values from both equations agree to within 1 SD of the residuals, 20 Pa, for the temperature range of 298 K $\le T \le T_c$. This magnitude reflects mainly the variability due to impurities in samples of different liquid-to-vapor ratios (26).

Because of the general disagreement between data sources, we deduced the specific terms in eq 9 mainly from our own data. In Figure 2, we compare saturated vapor pressures for different data sources with corresponding values defined by eq 9. The differences between data sources are too large to be

Figure 4. Comparison of surface-derived densities with corresponding experimental values: $\Delta \rho = \rho$ (Haynes (12)) – ρ (surface).

attributed to variations in sample composition (26, 28, 31). For the higher temperatures, we estimate the vapor pressure error in our work to be 0.0003 MPa for the pressure variable and the equivalent of 0.0003 MPa for the temperature variable. The latter is based on the reproducibility of the thermometer at the triple point of water.

Gas-Phase Isotherms. Using the Burnett method, we determined isotherms for temperatures of 377.59, 394.26, 423.15, and 448.15 K. For $T > T_c$, the isotherms were represented by a finite polynomial expansion in density for pressures up to 4.2 MPa and by discrete $P - \rho - T$ points for higher pressures (32). For $T < T_c$, the isotherms were represented by a finite polynomial expansion in density with the maximum pressure less than that of the saturated vapor. Although the name "virial coefficients" should only be identified with the coefficients of an infinite density series (33), we consider the coefficients of these finite series as being equivalent to virial coefficients, particularly for the linear and quadratic terms. The virial coefficients are listed in Table XI and the $P-\rho-T$ data in Table XII. The second virial and compressibility factor results for the higher temperatures, 423 and 448 K, were compared with corresponding results calculated from Beattie's $P-\rho-T$ data (11). The second virials agreed favorably to within a maximum difference of 0.3 \times 10⁻⁵ m³/kg (0.05%). The differences between compressibility factors were within 0.001 for the 448.15 K isotherm and, in contrast, as much as 0.003 for the nearcritical isotherm of 423.15 K. The increase is attributed to the critical enhancement of the effects of sample impurities and of differences in pressure and temperature scales for near-critical densities as the critical temperature is approached. In Figure 3, we compare our values of the compressibility factor with those from Sage (13) and Connolly (23). Connolly's values and ours follow from the virial representation of the compressibility factor, and Sage's values from $P-\rho-T$ data. The agreement with Connolly's results is acceptable, within 0.002 in the compressibility factor. In contrast, we disagree with Sage's results by as much as 0.01. The $P-\rho-T$ results, reported herein, were evaluated with different models of analysis and found to be the same for any model used. This suggested that sorption, if present, has had a negligible effect and the experimental data are precise.

Comparisons with Derived Properties. $P-\rho-T$ **Data.** The correlation has been developed solely from $P-\rho-T$ data and reflects the distribution and quality of the data used. In the least-squares selection of significant terms and evaluation of unknowns, we assigned statistical weights to the data points. The weights were varied according to our estimate of the accuracy and precision for each data source and to the magnitude of each variable. Representative comparisons of the more

Figure 5. Comparison of surface-derived densities with corresponding experimental values: $\Delta \rho = \rho$ (Beattie (11)) – ρ (surface).

accurate experimental data with values defined by the surface are illustrated in Figure 4 for the 260 and 300 K isotherms in the liquid phase and in Figure 5 for the 423 and 448 K isotherms in the gas phase. In the liquid phase, the average density deviation is 0.12% for temperatures from 260 to 300 K and as much as 0.6% for less accurate data, not shown, for higher temperatures. In the gas phase for $T > T_c$, the density deviations generally do not exceed 0.1%. Some larger deviations of 0.25% occur in a small density and temperature region, near the critical point, as illustrated in Figure 5 by the comparison of the 423 K isotherm. The explanation of the larger deviations lies within the data sources used, Beattie (11) and this work. In this region, the experimental data disagree by as much as 0.35%; elsewhere the agreement is with 0.1%. This inconsistency accounts for the larger but localized deviations. Physically, as we have stated previously, the increased difference between these two data sources is attributed to critical enhancement.

The surface $A(T,\rho)$ does not represent the vapor pressures as well as the vapor pressure equation, eq 9, at the higher temperatures, T > 373 K. In Figure 6, the experimental data used to obtain eq 9 are compared with corresponding values defined by the surface. The deviations are less than 0.0006 MPa for 245 $\leq T_c \leq 373$ K. For higher temperatures, the deviations increase to a maximum of 0.0026 MPa at 398 K. The explanation again lies within the data sources. Above 300 K, the liquid data exhibit limiting values of density with decreasing pressure which are significantly different from the saturated liquid density values defined by an accurate equation (3). This degrades the surface near the phase boundry, and therefore phase boundry properties as well.

Caloric Data. Apart from the $P-\rho-T$ data, few thermodynamic properties of isobutane have been measured. These consist mainly of enthalpies of vaporization and isobaric heat capacities of the saturated liquid and of the gas phase at low pressures for moderate temperatures less than T_c . In Figure 7, experimental and surface-derived values for the enthalpy of vaporization are intercompared. The deviations are within 2% for $261 \le T > 373$ K. For higher temperatures, the deviations are significantly larger, as much as 7.5%. In Table XIII, we have tabulated the experimental and surface-derived values of the isobaric heat capacity. The agreement is within 0.09% in both the liquid and gas phases. The close agreement with the gas-phase (vapor) data confirms the validity of the calculated ideal-gas properties for moderate temperatures.

Comments. The derived surface $A(T,\rho)$ conforms to the $P-\rho-T$ data within the tolerance allowed by the assigned weights (3) and agrees favorably with measured caloric data except at 380 and 390 K. The exceptions may be indicative

Figure 6. Comparison of surface-derived saturated vapor pressures with experimental values, $\Delta P_{\text{sat.}} = P_{\text{sat.}}(\text{expti}) - P_{\text{sat.}}(\text{surface})$: (O) this work; (D) Aston (29); (X) Gilmour (34); (Δ) Wackher (35).

Figure 7. Comparison of surface-derived enthalples of vaporization with experimental values, $\Delta H_{vap} = H_{vap}(\text{lit.}) - H_{vap}(\text{surface})$: (O) Aston (expti (29)); (D) Dana (expti (30)); (Δ) Hanson (calcd (4)); (\bullet) Sage (expti (13)).

of inaccurate caloric data or of limitations of the surface. The surface has to reflect the quality of the data. In the temperature range of 300 K < $T < T_c$, our estimate of the data accuracy in the liquid and vapor phases (13, 14) is as small as 1%. Further, most of the isotherms for the liquid phase at higher temperatures exhibit with decreasing pressures limiting density values which are significantly different from those of an accurate phase boundary (3). These factors could be the reasons for the larger caloric and vapor pressure differences at the higher temperatures.

The surface exhibits the characteristic retrograde behavior of hydrocarbons for temperature-entropy behavior of the saturated liquid and vapor. It is applicable for the calculation of thermodynamic properties for temperatures from 250 to 600 K and pressures up to 40 MPa with the exception of the critical region. The excluded critical region is defined by $0.98_5 < T_c/T < 1.01_5$ and $0.7 < \rho_c/\rho < 1.3$. For this region, a separate formulation is in preparation.

Comparison of Correlations. Concurrently with our isobutane correlation program and using a data base similar to ours, Goodwin and Haynes (9) have developed an isochoric (nonanalytic) correlation. Its primary purpose is the thermodynamic characterization of isobutane as a component of liquefied natural gas (LNG). The temperature and pressure ranges are 114-700 K and up to 70 MPa, respectively, whereas, for geothermal applications, our ranges are more limited, 250-600 K and up to 40 MPa. As applied to isobutane, each method has its own merits. The analytic method employs

Table XIII. Comparison of Isobaric Heat Capacities (C_p)

	Saturated Liquid				
		C	$T_p, kJ/(kg K)$)	
temp, K	press., MPa	this work	Aston (29)	Parks (36)	
230 240 250	0.0247 0.0404 0.7634	2.078 2.130 2.173	2.087 2.139 2.187	2.078 2.121 2.168	
260	0.0958	2.212	2.231	2.219	
		Vapor			
			C_p , kJ/(kg k	K)	
temp, K	press., MPa	this work	Ernst (<i>37</i>)	Wacker (38)	
293.15	0.0490	1.651	1.638		
353.15	0.1471 0.1961 0.0490 0.1471 0.4903	1.676 1.693 1.930 1.942 2.004	1.670 1.706 1.922 1.935 2.011		
243.15	0.7845 0.0121 0.0234	2.086 1.416 1.420	2.096	1.424 1.431	
273.15	0.0249	1.554		1.435	
313.15	0.0303	1.739		1.740	
353.15	0.0247 0.0513	1.927 1.930		1.926 1.929	

Table XIV. Comparison of Correlations for Percentage Difference of Enthalpies of Vaporization, $H_{vap}(ref 9)$ with Respect to $H_{vap}(this paper)$

 temp, K	% difference	temp, K	% difference
 255	-0.2	360	0.1
280	0.1	370	0.1
300	0.3	390	1
320	0.3	395	3
340	0.3	400	5

slowly varying functions and closely approximates the data base for $T > T_c$. In the liquid range, its effectiveness is limited by the particular function used for the temperature dependence in eq 7. The isochoric method employs a highly constrained function and closely approximates the accurate $P - \rho - T$ data in the liquid phase for $120 \le T \le 300$ K. For $T > T_c$, it is not as effective. A comparison is given in the following table:

		av de differe	ensity ence, %
temp range, K	data source	analytic method	isochoric method
$T > T_c$	ref 11 and this paper	0.1	0.8
liquid phase, $120 \le T \le 300$	ref 12		0.04
liquid phase, $250 \le T \le 300$	this paper	0.2_	

The 0.2% difference for the analytic method is also characteristic of an extrapolation to lower temperatures, lower limit of 120 K, in the liquid phase. In the comparison, the 300 K $< T < T_c$ liquid interval is omitted as the corresponding data are not sufficiently accurate to merit a comparison.

A complementary guide for judging the merit of the correlation methods is the comparison of derived properties, caloric and speed of sound. A limited comparison of enthalpies of vaporization is given in Table XIV and of heat capacities and speed of sound values in Table XV. The corresponding enthalpies of vaporization predicted by each correlation agree to within 0.3% for temperatures from 250 to 370 K. For higher

Table XV. Comparison of Correlations for Percentage Difference of Heat Capacities and Speed of Sound (W) Values, C_p (ref 9) with Respect to C_p (ref 10), C_v (ref 9) with Respect to C_v (ref 10), and W (ref 9) with Respect to W (ref 10)^a

	% difference				
temp, K	Cp	C _v	W		
	Pressure = (0.101325 MPa	<u>^</u>		
250	-2	4	9		
300	0.5	-0.3	0.5		
350	0.3	0.2	0.5		
400	0.1	0.2	0.4		
450	0.3	0.03	0.4		
500	-0.3	0.01	0.4		
600	-0.2	0.04	0.7		
700	-0.3	-0.04	0.3		
	Pressure = 0.5 MPa				
250	-2	4	-9		
300	-0.8	3	-8		
350	0.1	0.04	0		
400	0.1	0.2	0.4		
450	0.01	-0.2	0.4		
500	0.4	0.1	0.4		
600	0.04	-0.02	0.7		
700	0.1	-0.1	0.3		
	Pressur	e = 1 MPa			
250	-2	4	-10		
300	-1	2	-8		
350	$-\hat{0}.2$	-0.3	-0.5		
400	_0.2	0.5	-0.5		
400	-0.2	0.1	-0.5		
430	-0.2	0.1	0		
500	0.1	-0.3	0		
600	0.2	1.0	0.3		
700	-0.2	0.1	0.3		
250	Pressur	e = 5 MPa	<i>.</i>		
250	-2	2			
300	1	Ĩ	-4		
350	I	5	4		
400	-4	4	-1		
450	-0.7	-1	0.6		
500	0.6	-1	0		
600	0.2	-0.5	0.4		
700	0.1	-0.03	0.1		
	Pressure	e = 10 MPa			
250	-2	-1	1		
300	-1	-0.2	-1		
350	1	3	-1		
400	-4	6	1		
450	-2	3	2		
500	0.5	-2	0.4		
600	-0.5	-1	2		
700	0.02	0.6	2		
Pressure = 20 MPa					
250	-1	4	4		
300	-1	-3	2		
350	2	2	1		
400	_5	7	_2		
450		_3	1		
500		- 3	1		
500	-2		1		
7 00	-0.4	-2	0.6		
,	Processes	-40 MPa	~		
250	~2		9		
300	-1	-3	5		
350	2	2	2		
400	-5	5	-1		
450	-3	-3	-0.1		
500	1	1	-1		
600	-1	-1	0.2		
700	-0.5	$-\overline{1}$	-2		

^a Temperature range of ref 10 is 250-700 K.

temperatures the percentage difference increases slightly: 1% at 390 K, 3% at 395 K, and 5% at 400 K. At 390 K, the close

agreement of 1% in contrast with the much larger disagreement of both correlations (ref 9 and this paper) with Sage (13), about 6%, suggests an error in Sage's value. The generally close agreement reflects the use of similar or the same boundary data in both correlations.

The corresponding isobaric and isochoric heat capacities agree to within an average of 2% for pressures up to 10 MPa and temperatures from 250 to 700 K. For higher pressures up to 40 MPa, the average percentage difference increases to 3%. Outliers as large as 6% occur in the liquid region, particularly near the critical temperature. For the same range of conditions, corresponding speed of sound values agree within an average of a few percent. Outliers as large as 10% occur in the vapor region ($T < T_c$).

Although the comparison is characterized as being favorable, its significance may be limited. In regions where experimental caloric and speed of sound properties do not exist, the close comparison suggests only that the results are consistent with the data base and independent of the correlation method. Accurate experimental data for caloric and speed of sound properties over a wide range of conditions are needed for the thorough evaluation of the correlations.

Addendum. Since the completion of this correlation, a question has arisen concerning the appropriate value for the isobutane molecular weight to be associated with Beattle's data (11) published in 1950. A value of 58.077 is stated in the publication, whereas the generally accepted value since 1941 is 58.124_{+} . The latter is the one that we used with Beattle's data in the development of the surface. We cannot give a definitive argument for the use of one or the other value.

The effect of the discrepancy on surface-derived $P-\rho-T$ values is only 0.08% in density. In the following table, a comparison is given in percentage deviations of surface-derived density values with Beattie's data for each molecular weight value:

	deviation, %		
	$M = 58.124_{+}$	M = 58.077	
mean	-0.02	-0.09	
σ(mean)	0.01	0.007	
σ	0.09	0.06	

The effect on caloric properties derived from the surface has not been considered.

Glossary

a	constant of eq 7, residual Helmholtz energy
A _j and A ⁻	coefficients of eq 10, saturated vapor pressure (scaled)
$A(T,\rho)$	total Heimholtz energy, eq 1
Α ⁰ (Τ,ρ ₀)	ideal-gas contribution to $A(T,\rho)$ for the condition T and ρ_0 , eq 3
A _{base} -	physically based contribution to $A(T,\rho)$, compen-
(Τ,ρ)	sates for the difference between the pressure defined by the sum of $A^{0}(T,\rho_{0})$ and $A_{base}(T,\rho)$ and the ρ - σ - T data base on T
h	the $P - p - 1$ data base, eq 1
D	excluded volume parameter, eq o
b	reduced excluded volume parameter, eq 6
b ; and	coefficients of eq 6, excluded volume parameter
b 1	
В	second virial parameter, eq 5
B	reduced second virial parameter, eq 5
B	coefficients of eq 5, second virial
B	second virial for new isothermal data (this paper), Table XI
C.	isobaric heat capacity
ć°	C for ideal cas
	op ion local gas

C_v isochoric heat capacity

C _{nj}	coefficients of eq 7, residual Helmholtz energy
C	third virial for new isothermal data (this paper), Table
Д	fourth virial for new isothermal data (this paper),
Е	Table XI fifth virial for new isothermal data (this paper), Table
	XI
Ej	coefficients of eq 9, saturated vapor pressure
H	enthalpy
	Notice enthalpy
п, µ	vaporization enthaliny
//vap M	molecular weight
N,	coefficients of eq 2, isobaric heat capacity for ideal
	gas
Р	pressure
Pc	critical pressure
P*	designated unit of P equivalent to its S1 unit
P	reduced pressure, P/P
R C	gas constant
5 6	entropy liquid entropy
S S	venor entrony
s,	vaporization entropy
υ _{vap} τ	temperature
$\dot{\tau}$	critical temperature
T°	designated unit of <i>T</i> equivalent to its SI unit
τ	reduced temperature
u u	coefficient of eq 2. N_{o}/T
Ū	internal energy
U_1	liquid internal energy
Ú,	vapor internal energy
Uvap	vaporization internal energy
v	specific volume
v 1	liquid specific volume
V _v	vapor specific volume
W	speed of sound
y	defined as pb /4 in eq 4
ρ	density
ρ_{c}	density corresponding to a pressure of 0 101325
μ_0	MPa
ρ*	designated unit of $ ho$ equivalent to its SI unit
p	reduced density, ρ/ρ^*
θ	universal critical region exponent characterizing the divergence at d^2P_{ν}/dT^2
ν	vapor phase, defined as gas phase for $T < T_{c}$

standard deviation σ

Boldface italicized symbols are pseudo reduced quantities.

Registry No. Isobutane, 75-28-5.

Literature Cited

- (1) Kestin, J.; Khalifa, H. E.; Kumar, B. "The Thermodynamic and Transport Properties of Isobutane: A Survey of Available Data"; Division of Engineering, Brown University: Providence, RI, 1978; Report No. 000/4051-35 for Department of Energy (U.S.).
- Starling, K. E.; Sliepcevich, C. W.; Fish, L. W.; et al. "Development of (2)Working Fluid Thermodynamic Properties Information for Geotherms

Cycles-Phases I"; University of Oklahoma: Norman, OK, 1977; Report for Department of Energy, Division of Geothermal Energy (U.S.). Waxman, M.; Gallagher, J. S. "Proceedings of the 8th Symposium on

- (3) Thermophysical Properties"; Sengers, J. E., Ed.; ASME: New York, 1982; pp 88-96.
- (4) Hanson, G. H. Chem. Eng. Prog. 1946, 42, 959.
 (5) Das, T. R.; Kiloor, N. R. Indian J. Technol. 1967, 5, 40.
- (6) Das, T. R.; Reed, C. O., Jr.; Eubank, P. T. J. Chem. Eng. Data 1973, 18, 253. (7) Milora, S. L.; Combs, S. K. "Thermodynamic Representation of Am-
- monia and Isobutane", OR NL/TM-5847, prepared for Energy Re- monia and Isobutane, OK NL71M-5347, prepared for Energy Re-search and Development Administration by Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, 1977.
 Goodwin, R. D. Internal Report No. 79-1612; National Bureau of Standards (U.S.): Washington, DC, 1979.
 Goodwin, R. D.; Haynes, W. M. "Thermophysical Properties of Iso-butane from 114 to 700 K at Pressures to 70 MPa"; National Bureau of Standards (U.S.): Washington, DC, 1982; WBS Tech. Nate (U.S.) (8)

- of Standards (U.S.): Washington, DC, 1982; NBS Tech. Note (U.S.). Waxman, M.; Klein, M.; Gallagher, J. S.; Levelt Sengers, J. M. H. In-ternal Report No. 81-2435; National Bureau of Standards (U.S.): (10) Washington, DC, 1980; available from National Technical Information Service, Department of Commerce (U.S.), PB83-111005.
- (11) Beattle, J. A.; Marple, S., Jr.; Edwards, D. G. J. Chem. Phys. 1950,
- 18, 127. (12) Haynes, W. M., National Bureau of Standards (U.S.), private communication, 1980.
- (13) Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1936, 30, 673.
 (14) Morris, W. M.; Sage, B. H.; Lacey, W. N. Am. Inst. Min. Metall. Eng. Tech. Publ. 1939, No. 1128, 158.
 (15) Haar, L.; Gallagher, J. S.; Kell, G. S. "A Thermodynamic Surface for
- Water: The Formulation and Computer Programs"; referenced as National Bureau of Standards (U.S.) Internal Report No. 81-2253, 1981, and National Research Council (Canada) Report No. 19178, 1981. Haynes, W. N.; Hiza, M. J. J. Chem. Thermodyn. 1977, 9, 179. Silwinski, P. Z. Phys. Chem. (Frankfurt am Main) 1969, 63, 263.
- (16)
- (17)
- (18) BMDP Programs, Health Science Facility, University of California, 1979.
- (19) Filliben, J. J. Conference Proceedings, Computer Graphics 1981, 15, No. 3.
- Chen, S. S.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data (20) 1975, 4, 859.
- Barieau, R. E. J. Phys. Chem. 1965, 69, 495.
- Kohler, F.; Haar, L. J. Chem. Phys. 1981, 75, 388. Connolly, J. F. J. Phys. Chem. 1962, 66, 1082. (22) (23)
- Waxman, M.; Hastings, J. R. J. Res. Natl. Bur. Stand., Sect. C 1971, (24)
- 75, 165. (25) Wagner, W. "A New Correlation Method for Thermodynamic Data Ap-
- plied to the Vapour-Pressure Curve of Argon, Nitrogen and Water", IUPAC Thermodynamic Tables Project Centre, PC/T15, London, 1977. (26) Waxman, M.; Davis, H. A.; Levelt Sengers, J. M. H.; Klein, M. Internal Report No. 79-1715; National Bureau of Standards (U.S.): Washington, DC, 1979; available from National Technical Information Service, Department of Commerce (U.S.), PB82-120528, 44 pages
- (27) Beattie, J. A.; Edwards, D. G.; Marple, S., Jr. J. Chem. Phys. 1949, 17. 576.
- (28) Hastings, J. R.; Levelt Sengers, J. M. H.; Balfour, F. W. J. Chem. Thermodyn. 1980, 12, 1009.
- Aston, J. G.; Kennedy, R. M.; Schumann, S. C. J. Am. Chem. Soc. (29)1940, *62*, 2059.
- Dana, L. I.; Jenkins, A. C.; Burdick, J. N.; Timm, R. L. Refrig. Eng. (30) 1926, 12, 387.
- (31) Keesom, W. H. Commun. Phys. Lab. Univ. Leiden 1901, No. 75.
 (32) Waxman, M.; Hilsenrath, J.; Chen, W. T. J. Chem. Phys. 1973, 58,
- 3692. (33) Mason, E. A.; Spurling, T. H. "The Virial Equation of State"; Pergamon Press: Elmsford, NY, 1969; Chapter 1.
- (34) Gilmour, J. B.; Zwicker, J. O.; Katz, J.; Scott, R. L. J. Phys. Chem. 1967, 71, 3259.
- Wackher, R. C.; Linn, C. B.; Grosse, A. Y. Ind. Eng. Chem. 1945, (35) 37.464.
- (36) Parks, G. S.; Shomate, C. H.; Kennedy, W. D.; Crawford, B. L., Jr. J. Chem. Phys. 1937, 5, 359. Ernst, G.; Busser, J. J. Chem. Thermodyn. 1970, 2, 787. Wacker, P. F.; Cheney, R. K.; Scott, R. B. J. Res. Natl. Bur. Stand.
- (38) (U.S.) 1947, 38, 651.

Received for review March 22, 1982. Accepted November 1, 1982. We gratefully acknowledge the financial support of the Department of Energy (U.S.), Division of Geothermal Energy, under DOE contract no. EA-77-A01-6010 for this program.